• Title/Summary/Keyword: Feed Forward Neural Network (FFNN)

Search Result 15, Processing Time 0.019 seconds

Device Discovery using Feed Forward Neural Network in Mobile P2P Environment

  • Kwon, Ki-Hyeon;Byun, Hyung-Gi;Kim, Nam-Yong;Kim, Sang-Choon;Lee, Hyung-Bong
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.393-401
    • /
    • 2007
  • P2P systems have gained a lot of research interests and popularity over the years and have the capability to unleash and distribute awesome amounts of computing power, storage and bandwidths currently languishing - often underutilized - within corporate enterprises and every Internet connected home in the world. Since there is no central control over resources or devices and no before hand information about the resources or devices, device discovery remains a substantial problem in P2P environment. In this paper, we cover some of the current solutions to this problem and then propose our feed forward neural network (FFNN) based solution for device discovery in mobile P2P environment. We implements feed forward neural network (FFNN) trained with back propagation (BP) algorithm for device discovery and show, how large computation task can be distributed among such devices using agent technology. It also shows the possibility to use our architecture in home networking where devices have less storage capacity.

  • PDF

Audio Event Detection Using Deep Neural Networks (깊은 신경망을 이용한 오디오 이벤트 검출)

  • Lim, Minkyu;Lee, Donghyun;Park, Hosung;Kim, Ji-Hwan
    • Journal of Digital Contents Society
    • /
    • v.18 no.1
    • /
    • pp.183-190
    • /
    • 2017
  • This paper proposes an audio event detection method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate output probabilities of twenty audio events for each frame. Mel scale filter bank (FBANK) features are extracted from each frame, and its five consecutive frames are combined as one vector which is the input feature of the FFNN. The output layer of FFNN produces audio event probabilities for each input feature vector. More than five consecutive frames of which event probability exceeds threshold are detected as an audio event. An audio event continues until the event is detected within one second. The proposed method achieves as 71.8% accuracy for 20 classes of the UrbanSound8K and the BBC Sound FX dataset.

Device Discovery in P2P Environment using Feed Forward Neural Network (FFNN을 사용한 P2P 디바이스 디스커버리)

  • Balayar Chakra B.;Kwon Ki-Hyeon;Kim Sang-Choon;Byun Hyung-Gi;Kim Nam-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.1223-1226
    • /
    • 2006
  • P2P(Peer to Peer) 기술은 1990년대 후반기부터 산업계 및 학계에 주목을 받고 있는 기술 분야중의 하나로 이 기술의 장점은 인터넷 환경에 산재하여 있는 컴퓨팅 파워, 공간, 네트워크 대역을 인터넷 기반으로 효과적으로 활용하여 협력작업을 가능하게 한다는데 있다. 최근에는 모바일 환경 응용을 위한 P2P 디바이스 탐색 분야에 관심사가 증대되고 있으며, P2P 시스템은 중앙통제 장치가 결여 되어 있기 때문에 중앙통제 장치 개입을 최소로 하면서 P2P를 운영하기 위한 효율적인 기법 및 체계가 요구되고 있다. 본 논문에서는 기존의 접근방법을 검토하여 FFNN(feed forward neural network)을 이용한 디바이스 탐색 기법을 제시한다. 제시한 FFNN은 BP(back propagation) 알고리즘을 통해 훈련하고 디바이스를 탐색한다. 제시한 시스템의 성능을 보이기 위해 일정한 계산량을 가지는 작업을 에이전트를 활용, 탐색된 디바이스간에 분배하여 처리한다. 본 논문에서는 제한된 자원을 가지는 디바이스 간에 P2P를 사용하는 기법에 대해 제시하였다.

  • PDF

Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea

  • Lee, Kyung-Tae;Han, Juhyeong;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.395-402
    • /
    • 2022
  • To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory, with diverse input datasets, and compares their performance. The Blast_Weathe long short-term memory r_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.

Developing an approach for fast estimation of range of ion in interaction with material using the Geant4 toolkit in combination with the neural network

  • Khalil Moshkbar-Bakhshayesh;Soroush Mohtashami
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4209-4214
    • /
    • 2022
  • Precise modelling of the interaction of ions with materials is important for many applications including material characterization, ion implantation in devices, thermonuclear fusion, hadron therapy, secondary particle production (e.g. neutron), etc. In this study, a new approach using the Geant4 toolkit in combination with the Bayesian regularization (BR) learning algorithm of the feed-forward neural network (FFNN) is developed to estimate the range of ions in materials accurately and quickly. The different incident ions at different energies are interacted with the target materials. The Geant4 is utilized to model the interactions and to calculate the range of the ions. Afterward, the appropriate architecture of the FFNN-BR with the relevant input features is utilized to learn the modelled ranges and to estimate the new ranges for the new cases. The notable achievements of the proposed approach are: 1- The range of ions in different materials is given as quickly as possible and the time required for estimating the ranges can be neglected (i.e. less than 0.01 s by a typical personal computer). 2- The proposed approach can generalize its ability for estimating the new untrained cases. 3- There is no need for a pre-made lookup table for the estimation of the range values.

FE and ANN model of ECS to simulate the pipelines suffer from internal corrosion

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.297-314
    • /
    • 2016
  • As the study of internal corrosion of pipeline need a large number of experiments as well as long time, so there is a need for new computational technique to expand the spectrum of the results and to save time. The present work represents a new non-destructive evaluation (NDE) technique for detecting the internal corrosion inside pipeline by evaluating the dielectric properties of steel pipe at room temperature by using electrical capacitance sensor (ECS), then predict the effect of pipeline environment temperature (${\theta}$) on the corrosion rates by designing an efficient artificial neural network (ANN) architecture. ECS consists of number of electrodes mounted on the outer surface of pipeline, the sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of two dimensional capacitance sensors are illustrated. The variation in the dielectric signatures was employed to design electrical capacitance sensor (ECS) with high sensitivity to detect such defects. The rules of 24-electrode sensor parameters such as capacitance, capacitance change, and change rate of capacitance are discussed by ANSYS and MATLAB, which are combined to simulate sensor characteristic. A feed-forward neural network (FFNN) structure are applied, trained and tested to predict the finite element (FE) results of corrosion rates under room temperature, and then used the trained FFNN to predict corrosion rates at different temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an FFNN results, thus validating the accuracy and reliability of the proposed technique and leads to better understanding of the corrosion mechanism under different pipeline environmental temperature.

Potential of regression models in projecting sea level variability due to climate change at Haldia Port, India

  • Roshni, Thendiyath;K., Md. Sajid;Samui, Pijush
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.319-328
    • /
    • 2017
  • Higher prediction efficacy is a very challenging task in any field of engineering. Due to global warming, there is a considerable increase in the global sea level. Through this work, an attempt has been made to find the sea level variability due to climate change impact at Haldia Port, India. Different statistical downscaling techniques are available and through this paper authors are intending to compare and illustrate the performances of three regression models. The models: Wavelet Neural Network (WNN), Minimax Probability Machine Regression (MPMR), Feed-Forward Neural Network (FFNN) are used for projecting the sea level variability due to climate change at Haldia Port, India. Model performance indices like PI, RMSE, NSE, MAPE, RSR etc were evaluated to get a clear picture on the model accuracy. All the indices are pointing towards the outperformance of WNN in projecting the sea level variability. The findings suggest a strong recommendation for ensembled models especially wavelet decomposed neural network to improve projecting efficiency in any time series modeling.

Flow Factor Prediction of Centrifugal Hydraulic Turbine for Sea Water Reverse Osmosis (SWRO)

  • Ma, Ying;Kadaj, Eric;Terrasi, Kevin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • The creation of the hydraulic turbine flow factor map will undoubtedly benefit its design by decreasing both the design cycle time and product cost. In this paper, the geometry and flow variables, which effectively affect the flow factor, are proposed, analyzed and determined. These flow variables are further used to create the operating condition maps by using different model approaches categorized into Response Surface Method (RSM) and Artificial Neural Network (ANN). The accuracies of models created by different approaches are compared and the performances of model approaches are analyzed. The influences of chosen variables and the combination of Principle Component Analysis (PCA) and model approaches are also studied. The comparison results between predicted and actual flow factors suggest that two-hidden-layer Feed-forward Neural Network (FFNN), and one.hidden-layer FFNN with PCA has the best performance on forming this mapping, and are accurate sufficiently for hydraulic turbine design.

Development of a Runoff Forecasting Model Using Artificial Intelligence (인공지능기법을 이용한 홍수량 선행예측 모형의 개발)

  • Lim Kee-Seok;Heo Chang-Hwan
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.141-155
    • /
    • 2006
  • This study is aimed at the development of a runoff forecasting model to solve the uncertainties occurring in the process of rainfall-runoff modeling and improve the modeling accuracy of the stream runoff forecasting, The study area is the downstream of Naeseung-chun. Therefore, time-dependent data was obtained from the Wolpo water level gauging station. 11 and 2 out of total 13 flood events were selected for the training and testing set of model. The model performance was improved as the measuring time interval$(T_m)$ was smaller than the sampling time interval$(T_s)$. The Neuro-Fuzzy(NF) and TANK models can give more accurate runoff forecasts up to 4 hours ahead than the Feed Forward Multilayer Neural Network(FFNN) model in standard above the Determination coefficient$(R^2)$ 0.7.

Audio Event Classification Using Deep Neural Networks (깊은 신경망을 이용한 오디오 이벤트 분류)

  • Lim, Minkyu;Lee, Donghyun;Kim, Kwang-Ho;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.27-33
    • /
    • 2015
  • This paper proposes an audio event classification method using Deep Neural Networks (DNN). The proposed method applies Feed Forward Neural Network (FFNN) to generate event probabilities of ten audio events (dog barks, engine idling, and so on) for each frame. For each frame, mel scale filter bank features of its consecutive frames are used as the input vector of the FFNN. These event probabilities are accumulated for the events and the classification result is determined as the event with the highest accumulated probability. For the same dataset, the best accuracy of previous studies was reported as about 70% when the Support Vector Machine (SVM) was applied. The best accuracy of the proposed method achieves as 79.23% for the UrbanSound8K dataset when 80 mel scale filter bank features each from 7 consecutive frames (in total 560) were implemented as the input vector for the FFNN with two hidden layers and 2,000 neurons per hidden layer. In this configuration, the rectified linear unit was suggested as its activation function.