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Device Discovery using Feed Forward Neural Network

in Mobile P2P Environment
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Abstract

P2P systems have gained a lot of research interests and popularity over the years and have the
capability to unleash and distribute awesome amounts of computing power, storage and bandwidths

currently languishing - often underutilized - within corporate enterprises and every Internet

connected home in the world. Since there is no central control over resources or devices and no
before hand information about the resources or devices, device discovery remains a substantial

problem in P2P environment. In this paper, we cover some of the current solutions to this problem

and then propose our feed forward neural network (FFNN) based solution for device discovery in
mobile P2P environment. We implements feed forward neural network (FFNN) trained with back
propagation (BP) algorithm for device discovery and show, how large computation task can be
distributed among such devices using agent technology. It also shows the possibility to use our
architecture in home networking where devices have less storage capacity.
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1. Introduction

Peer-to-Peer which is commonly known as
P2P, has been gripping the world wide web ra
pidly making itself choice of many end users f
or sharing resources, disseminating information
and distributing tasks[1,2]. One main reason is
due to economic slowdown where users are lo
oking for getting maximum benefit from the h
ardware they have. Some prominent advantage
s of P2P systems are greater bandwidth, more
computing power (storage, memory, CPU cycle
s) available, and more people connected and m
ore data generated. In its short period, P2P sy
stems have overtaken client-server model due
to its unique characteristic i.e. every networke
d device acts as both client and server[l]. Las
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t decade saw development of various applicatio
ns such as Napster[3], Gnutella[4], KaZaAl5] a
nd JXTAI6] bringing P2P in limelight.

Furthermore, millions of users connecting to
the Internet have started to work in group, in
collaboration knowingly or unknowingly posses
sing the possibility of becoming supercomputer
s if integrated properly. It is believed that less
than half of present computer processing powe
r is used in realll,2,7]. Hence, these powerful
machines are not utilized to full capabilities an
d have enough idle CPU cycles or storage cap
acity for use. With the help of discovery, thos
e dark matters of the Internet (unused CPU a
nd storage) can be traced and used efficiently.
But, discovery of available resources or device
s in these environments, especially in mobile P
2P environment is a challenging task.

All the available discovery algorithms follow
certain rules while forwarding any queries. W
hen a device receives a query, it forwards it t
o its neighbors or drops the query using certa
in parameters like TTL(Time To Live), earlier
replies or success rate which stop them to be
optimal. The parameter dependency becomes t
heir limitation. Hence it is necessary to minimi
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ze these parameters to allow zero configurabili
ty when applied to a real environment and/or
there should be an efficient algorithm which ¢
an utilize various strategies at the same time.
To overcome these limitations intelligent resou
rce discovery technique is required. Hence we
applied neural network based on feed forward
neural network (FFNN) which learns by itself
according to the situation in the given conditio
ns and uses many combinations of strategies t
o locate resources. (Figure 1) shows, peer ‘A’
is how to find and select other peer by availa
ble resources and disperse the task to selected
peers.
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(Figure 1) Discovery in P2P

Who has
processing power?

In this paper, we've implemented feed
forward neural network[11] trained with back
propagation(BP)  algorithm[12] to

in mobile

discover
FFNN
uses various parameters as input values such

devices P2P environment.
as free CPU, the number of neighbors any
device has and the number of hops etc. The
next job is large computation with the help of
agent technology dividing and distributing the
task among capable devices.

The paper is structured as follows. Section
Section 3
network. Section 4

2 discusses the related works.
describes about neural
introduces our proposed architecture for device
discovery where as section 5 describes the
implementation and preliminary results. Finally,

we have summarized the conclusions in

section 6.

2. Related Work

There have been many approaches to discov
er P2P in the mobile environment. In Napster,
a node sends request query to the centralized
server which begins search with those nodes
which are registered in it. After successful sea
rch, the file exchange occurs direct between n
odes without any control from the server. The
problem is in the central information storage
which means single point failure, non-scalable
and the requirement of central administration.

Gnutella algorithm propagates the request to
all its neighbors until TTL (time to live) valu
e. As search completes, the result is forwarde
d to their neighbors and finally to the request
ed node. But the flooding produces high overlo
ad to large number of peers and it doesn’t sca
le too. There is also problem to define proper
value for TTL.

In Random Walks, the query sender node se
nds k-query messages to those k-nodes which
are selected in random basis. The queries are
known as walkers and terminate either on suc
cess or failure. Though it decreases the numb
er of messages or search results significantly
[13,14] however, the result varies according to
network topology and random choices.

It's modified version of BFS (Breadth First
Search). Nodes keeps the update information a
bout their neighbors in order to rank them wh
ich helps the node to forward the query to the
selected neighbors that have returned the most
results for similar queries. Though it scales w
ell in accuracy and knowledge sharing and it
also induces no overhead during nodes arrival/
departure, but it produces large number of me
ssages and shows no easy adaptation of resou
rce deletions or peer departures.

In Directed BFS[15], each node keeps track
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of the success rates of earlier queries for parti
cular resource which reflects the relative proba
bility of this node’s neighbor to be chosen as
the next hop in a future request for that parti
cular resource. The searching is based on ran
dom walks forwarding the query to one of its
neighbor with probability. It updates the indexi
ng using feedback from the walkers. Directed
BFS has feature of learning and induces zero
overhead over the network at join or leave/up
date.

In Local Indices[16], each node indexes the f
iles stored at all nodes inside a certain periphe
ral, i.e. within a certain radius. And, it can an
swer on behalf of those nodes performing the
search in BFS-like manner. But, in Routing In
dices[17], documents are supposed to fall into
a number of thematic categories and each nod
e has information about approximate number o
f documents from each category that can be r
etrieved through each outgoing link. The forw
ard process is similar to DFS (Depth First Se
arch) and index maintenance requires flooding
messages initiated from nodes that arrive or u
pdate their collections.

The nodes that have no information about t
he requested query forwards the query to all
of its neighbors with certain probability in DR
LP[18}. In case of found resource, the query ta
kes the reverse path to the requester and regi
sters the resource location and in the subsequ
ent search, it contacts directly to the specific
node.

3. Neural Network

Breadth First Search (BFS) flooding algo-
rithm is sends query to all neighbors. So, all
resources in the network can be found, but
network gets congested and there are lots of
useless packets. But, neural network and evo-
lution can be adapt its behavior to given
environment. The neural network is used for

deciding whether to pass the query further
down the connection or not. And, evolution is
used for breeding and finding out the best
neural network in a large class of local search
algorithms.

Artificial Neural Network (ANN) is an in-
terconnected group of artificial or biological
neurons. These neurons are organized as com-
plex structure with the help of special con-
nectors called synapses[89]. AAN is intelligent
system that is similar and based on biological
model of human brain. It operates on similar
principle like a biological neuron where each
incoming synapse of a neuron has a weight
associated with it
trained by adjusting weights between network

The neural network is

elements and has a self learning capability,
fault tolerant, and has been used in a broad
range of applications, including: system identi-
fication, pattern recognition, pattern completion,
function approximation, optimization, prediction,
automatic control[19]. ANN is potentially use-
ful for studying the complex relationships be-
tween inputs and outputs of a system[20].
There are many ANN models; one of the
prominent is back propagation(BP)[20]. In this
paper, three-layer feed forward neural net-
work(FFNN) with sigmoidal function as acti-
vation function in hidden layer followed by
output layer is employed. The neural network
is trained using BP algorithm. A momentum
term is used in the BP algorithm to achieve a
faster global convergence. A bias value is
used to enable each neuron to fire hundred
percent.

4. Architecture

4.1 Device Discovery Architecture using
Feed Forward Neural Network

As in (Figure 2), we implemented a device

discovery architecture is based on feed forwar

d neural network (FFNN). Once a peer gets a
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ny query, it decides where to forward or not r
unning FFNN for all individual peers. The pee
r is connected with two other peers (devices).
It runs FFNN for both peers and decides whet
her to forward or not to any particular peer. I
t can forward both of them or one or none ac
cording to the result of FFNN.

(Figure 2) Query Processing of FFNN

Architecture

4.2 Feed Forward Neural Network

Our proposed feed forward neural network a
rchitecture is as in (Figure 3). It has an input
layer, a hidden layer and an output layer. The
input layer is connected to hidden layer and hi
dden layer to output layer.

Input Layer
{5 nodes)

Hidden Layer Output Layer

Forward?
Yes/No

Input from User Program
Output to External Environment

{Figure 3) Feed Forward Neural Network

Structure

4,2.1 The Input Layer

The input layer is the conduit through whic
h the external environment sends a pattern to
the neural network. It should represent the co
ndition for which we're training the network f
or. As in (Figure 2), we defined input values
as Bias, Hops, Myneighbors, NeighborsNeighbo
rs and CPU where Bias is always 1, Myneigh
bors is the number of neighbors any node has,
NeighborsNeighbors is the number of nodes a
ny node’s particular neighbor has. CPU is the
available CPU percentile of any particular nod
e.

422 The Hidden Layer

The hardest job in neural network is to defi
ne the number of hidden layers. Since neural
networks with two hidden layers can represent
functions with any kind of shape and with on
e hidden layer is enough for many practical pr
oblems, we used one hidden layer. The numbe
r of hidden layer's neuron is very important p
art of deciding the overall performance of any
neural network since this layer influences the
output most. Using rule-of-thumb, we decided
9-neurons for the hidden layer.

4.2.3 The Output Layer

Since our system needs to decide whether
to forward or not forward, we fixed output as
a single value which gets either 1 (forward)
or 0 (not forward).

4.2.4 Algorithm
The back propagation(BP) algorithm is one

of the most important and widely used
training methodologies for neural network.
Learning takes place based upon mean

squared error and gradient descent. And, BP
makes it easy to find the networks error
weight gradient for a given pattern. It is

sometimes known as generalized Delta rule.
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The steps of algorithm are as follows.

(1) Initialize weights
FEach weight in the network initialized to
some small random value

(2) For next pattern

@ Perform a forward propagation step
u lzf(s ,')

1

i
where S ;=2 w u ; and f(X)=ﬁ

First, net weighted sum S; is calculated
and activation u; for each neurons using

sigmoidal activation function.

@ Perform backward propagation

f(x)=fx)(1-(x)) or (S D=u (1-u )

if u;is an output unit,
§,=u;(1-u XC;—u,)

if u; is a hidden unit,

6 i=u ,-(1—u l)ib W
Error is calculated starting from outputs

and propagated back to the hidden layer and
input layer as above. C; is the weighted sum

of the errors.

® Update weights

we =W heS u

Weight update is done online immediately
after the
Momentum term was added to reduce the

forward propagation as above.

training time.
w=w tadw ;+p8 u
where  Aw ; is the previous weight change.

And, alpha is the momenturn term.
Weight update is done online immediately
after the forward propagation as above.

(3) Stop when total error is acceptable
@ compute total error

@ if acceptable STOP, otherwise GO back
STEP 2
Algorithm stops when the value of the error
function has been sufficiently small.

5. Neural Network

5.1 Implementation Environment

We carried out experimental works with 20
embedded kits, called PXA250, to confirm the
proposed device discovery architecture using
FEFNN.
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(Figure 4) Experimental Topology
(Note: P means a peer.)

(Figure 4) shows experimental topology.
<Table 1> shows the hardware specificatio
n for PXA250. It was arranged in an ad-ho
¢ network using wireless LAN.

<Table 1> Hardware Specification

T "~ Description
Processor Intel PXA250 400MHz
SDRAM Samsung 64MB

Flash Intel strata flash 32MB
Wireless LAN|  WLI-USB-L11G

Display LG TFT 6.4"(640%480)
RTC RTC4513(Real Time Clock)
MMC, CF 1 Slot, 1 Slot

We used Java as developing language (JDK
1.3.1, JRE1.3.1) and Linux as operating system
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(Kernel 2.4.18). The details for software specifi

cation are expressed in <Table 2>.

<Table 2> Software Specification

Device Driver

Item o . Description
0/S Linux 24.18
CS9800 Ethernet, PCMCIA, CF,
MMC

FFrame Buffer

ADS7843 (Touch Screen)

File System

JFFS2, Ramdisk

GUI

Tiny X Server

5.2 Prototype

LPeer Monitor I Peer Handler |

cpPU
information

Peer ||:XAgent H Peer l

CpPuU
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Load
(Xagent)

Send Agent(Task) »

Request
CPUinfo |

PU Infc
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(Figure 5) State Transition Diagram

The prototype implementation consists of th
e following components: (1) a PeerMonitor (P
M), (2) an agent and load balancing mechanis
m, and (3) a Feed Forward Neural Network.

(Figure 5) shows state transition diagram of
the prototype.

5.2.1 Peer Monitor

Our architecture assumes that PM (PeerMon
itor) works as a firing agent and shows its ne
ighbors state like CPU percentile, IP and mem
ory percentile etc. And each peer acts as clien
t and server according to the situation at any
time. It creates PeerHandler and gets CPU inf
ormation from the peers and then, sends Agen
t with certain task. That peer looks for neighb

or peers and decides to whom the task should
be sent according to their CPU information dis
tributing the task among all available peers.

5.2.2 Agent and Load Balancing

An agent is used for distributing task with
proper balancing algorithm, here we use divide
and conquer. Agents are autonomous and

responsible for sending task or returning

results or gathering information.

5.2.3 Training Feed Forward Neural Network

We formed four subnets from twenty embed
ded devices in our laboratory, placing five in e
ach subnet as in (Figure 4) and run FFENN tr
aining with BP to decide whether its any parti
cular neighbor has sufficient resource or not.

Let's suppose the peer 1 has a task. It need
s to decide whether some of its neighbor can
help him or not, for example Peer 1, Peer 2, P
eer 3 and Peer 4 as in (Figure 4) First, Peer
1 secures the values for the parameter Hops,
Myneighbors, NeighborsNeighbors and CPU in
a set [Hops, Myneighbors, NeighborsNeighbor
s, CPU] for each neighbor peers. Then, it feed
these values to feed forward neural network a
nd trains with backpropagation. In the case of
Peer 1, since the query starts from Peer 1, so
Hops value is zero, Myneighrbors value is 4 s
ince it has four neighbors: Peer?, Peer 3, Peer
4, and Peer 5. And, the value of NeighborsNei
ghbors and CPU are different for each of its
Mpyneighbors. Let’s take the case of Peer 2, fo
r whom Peer 1 gets NeighborsNeighbors value
is 0 since Peer 2 has no neighbors and CPU
value is the available CPU of Peer 2. Then, th
ese values forms the set[0,.4,0,1]1 which is fed
into the neural network for training.

Since Peer 1 has four neighbors, it first dec
ides who are capable of computing the task. T
hen, it sends the task to them using agent (e
X. XAgent). Similarly, Peer 3 and Peer 4 can
again divide the task since they have neighbor
s. In this way, large computation is divided in
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to smaller ones and computed by various avail
able peers in collaborative and distributed man
ner where the unused CPU of each capable de
vice (which FFNN decides) is used. As in (Fi
gure 4) all the peers have parameters Hops,
Myneighbors, NeighborsNeighbors, CPU and th
eir values for each neighbor.

5.2.4 Preliminary Results
We have successfully implemented and got p
reliminary results for (Figure 6) and (Figure 7)
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(Figure 6) PeerMonitor and Peer Status

(Figure 6) shows the state of each peer ava
liable resource(CPU, memory) and status whet
her the peer is working or not, and (Figure 7)
is the experimental display of PXA250 embedd
ed kit. We haven't yet made any performance
comparison with other present technologies, bu
t it showed high potentiality for the dynamic
environment like P2P and could be an alternati
ve. We are still working on this project and e
xpecting to come up with further concrete adv
antages.

(Figure 7) was the execution snapshot in ou
r laboratory.

(Figure 7) Execution Snapshot

6. Conclusion

The Internet has thousands of computers
connected and more than half of them are
using less than half of their actual power
(CPU, storage, Memory). P2P has brought
great change in distributing computing leaving
traditional client-server model in jeopardy. It
utilizes the unused processing power. However
the problem of device discovery remains a
substantial threat on is development, existence.
This work showed new direction to solve this
credential  problem of discovery  using
intelligent mechanism, neural network. Feed
Forward Neural Network (FFNN) trained with
back progation(BP) was used to discover the
efficient devices from ocean of connected
Then, we

devices. distributed a large

computation task wusing agent technology
among those capable devices. This work also
showed how to utilize the unused resources
task. We
rudimentary neural network based architecture
and achieved the feat to share or to lease the
Hence, P2P

computing seems to have the potential to offer

for handling any implemented

computing  power/resources.
a better and intelligent solution in combination
with neural network in device discovery,
Although other techniques may prove accurate
at the same task, the neural network seems to
be suitable and sufficiently accurate choice.
Since the work is in preliminary stage, it
needs to invest more research time to cement
Future works will

its legitimacy. cover

performance evaluation and advantages over
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other technologies.
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