• Title/Summary/Keyword: Feed Deprivation

Search Result 30, Processing Time 0.026 seconds

Effect of Dietary Protein and Lipid Levels on Compensatory Growth of Juvenile Olive Flounder (Paralichthys olivaceus) Reared in Suboptimal Temperature

  • Cho, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.407-413
    • /
    • 2011
  • Effect of dietary protein and lipid levels on compensatory growth of juvenile olive flounder (Paralichthys olivaceus) was determined in suboptimal temperature ($13.4{\pm}1.42^{\circ}C$). Five hundred forty fish averaging 79.2 g were randomly distributed into 27 of 300 L flow-through tanks (20 fish/tank). Nine treatments were prepared in triplicate: fish were hand-fed with control (C) diet for 10 weeks (10WF-C); four fish groups were starved for 1 week and then fed with C, high protein (HP), high lipid (HL) and combined high protein and high lipid (HPL) diets for 9 weeks, referred to as 9WF-C, 9WF-HP, 9WF-HL, 9WF-HPL, respectively; and other four fish groups were starved for 2 weeks and then fed with C, HP, HL and HPL diets for 8 weeks, referred to as 8WF-C, 8WF-HP, 8WF-HL and 8WF-HPL, respectively. Weight gain and specific growth rate of fish in 9WF-HP, 9WF-HPL, 8WF-HP and 8WF-HPL treatments were higher than those of fish in 9WF-HL and 8WF-HL treatments. Feed efficiency of fish in 8WF-HP treatment was higher than that of fish in 9WF-C, 9WF-HL and 8WF-HL treatments. Protein efficiency ratio of fish in 10WF-C, 8WF-C, 8WF-HP and 8WF-HPL treatments was higher that that of fish in 9WF-HL and 8WF-HL treatments. Juvenile olive flounder subjected to 2-week feed deprivation could achieve full compensatory growth with dietary supplementation of protein or combined high protein and high lipid.

Evaluation of Optimum Dietary Threonine Requirement by Plasma Free Threonine and Ammonia Concentrations in Surgically Modified Rainbow Trout, Oncorhynchus mykiss

  • Yun, Hyeonho;Park, Gunjun;Ok, Imho;Katya, Kumar;Heung, Silas;Bai, Sungchul C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.551-558
    • /
    • 2015
  • This study was carried out to evaluate the dietary threonine requirement by measuring the plasma free threonine and ammonia concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A total of 70 fish (average initial weight $506{\pm}8.2g$) were randomly distributed into each of the 14 net cages (5 fish/cage). After 48 hours (h) of feed deprivation, each group was intubated at 1% body weight with one of the seven L-amino acid based diets containing graded levels of threonine (0.42%, 0.72%, 0.92%, 1.12%, 1.32%, 1.52%, or 1.82% of diet, dry matter basis). Blood samples were taken at 0, 5, and 24 h after intubation. Post-prandial plasma free threonine concentrations (PPthr) of fish 5 h after intubation with diets containing 1.32% or more threonine were significantly higher than those of fish intubated with diets containing 1.12% or less threonine (p<0.05). Post-absorptive free threonine concentrations (PAthr) after 24 h of intubation of the fish with diets containing 0.92% or more threonine were significantly higher than those of fish intubated with diets containing 0.72% or less threonine. Post-prandial plasma ammonia concentrations (PPA, 5 h after intubation) were not significantly different among fish intubated with diets containing 1.12% or less threonine, except the PPA of fish intubated with diet containing 0.42% threonine. Broken-line model analyses of PPthr, PAthr, and PPA indicated that the dietary threonine requirement of rainbow trout should be between 0.95% (2.71) and 1.07% (3.06) of diet (% of dietary protein on a dry matter basis).

Effect of Dietary Composition with Different Feeding Regime on Compensatory Growth of Juvenile Olive Flounder Paralichthys olivaceus

  • Cho, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.8
    • /
    • pp.1148-1156
    • /
    • 2011
  • Compensatory growth of juvenile olive flounder Paralichthys olivaceus fed different diets with different feeding regime was compared. Four hundred fifty fish (twenty five fish per tank) were randomly distributed into 18 of 180 L flow-through tanks. Six treatments were prepared: fish were hand-fed with the control (C) diet to satiation twice a day, six days a week, for 8 weeks (C-8W treatment); and other groups of fish were starved for 2 weeks and then fed with the C, high protein (HP), high carbohydrate (HC), high lipid (HL), and combined protein, carbohydrate and lipid (CPCL) diets to satiation twice a day, six days a week, for 6 weeks, referred to as C-6W, HP-6W, HC-6W, HL-6W, and CPCL-6W treatments, respectively. Final body weight of fish in HP-6W treatment was higher than that of fish in C-6W, but not different from that of fish in C-8W, HC-6W, HL-6W and CPCL-6W treatments. Specific growth rate of fish in HP-6W treatment was higher than that of fish in all other treatments except for fish in CPCL-6W treatment. Feeding rate of fish in C-8W treatment was higher than that of fish in HP-6W, HC-6W, HL-6W and CPCL-6W treatments, but not different from that of fish in C-6W treatment. In addition, feeding rate of fish in C-6W treatment was higher than that of fish in HP-6W, HL-6W and CPCL-6W treatments. Feed and protein efficiency ratios of fish in HP-6W, HC-6W, HL-6W and CPCL-6W treatments were higher than those of fish in C-6W treatment. None of moisture, crude protein and ash content of the whole body of fish excluding the liver was different among treatments. Dietary supplementation of protein, carbohydrate, lipid and their combination could improve compensatory growth of fish when fish were fed for 6 weeks after 2-week feed deprivation; especially, supplementation of dietary protein was the most effective to improve compensatory growth of fish.

Effects of starvation-induced negative energy balance on endoplasmic reticulum stress in the liver of cows

  • Islam, Md Aminul;Adachi, Shuya;Shiiba, Yuichiroh;Takeda, Ken-ichi;Haga, Satoshi;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • Objective: Endoplasmic reticulum (ER) stress engages the unfolded protein response (UPR) that serves as an important mechanism for modulating hepatic fatty acid oxidation and lipogenesis. Chronic fasting in mice induced the UPR activation to regulate lipid metabolism. However, there is no direct evidence of whether negative energy balance (NEB) induces ER stress in the liver of cows. This study aimed to elucidate the relationship between the NEB attributed to feed deprivation and ER stress in bovine hepatocytes. Methods: Blood samples and liver biopsy tissues were collected from 6 non-lactating cows before and after their starvation for 48 h. The blood non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA) and glucose level were analyzed. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with UPR and lipid metabolism. Results: The starvation increased the plasma BHBA and NEFA levels and decreased the glucose level. Additionally, the starvation caused significant increases in the mRNA expression level of spliced X-box binding protein 1 (XBP1s) and the protein level of phosphorylated inositol-requiring kinase 1 alpha (p-IRE1α; an upstream protein of XBP1) in the liver. The mRNA expression levels of peroxisome proliferator-activated receptor alpha and its target fatty acid oxidation- and ketogenesis-related genes were significantly upregulated by the starvation-mediated NEB. Furthermore, we found that the mRNA expression levels of lipogenic genes were not significantly changed after starvation. Conclusion: These findings suggest that in the initial stage of NEB in dairy cows, the liver coordinates an adaptive response by activating the IRE1 arm of the UPR to enhance ketogenesis, thereby avoiding a fatty liver status.

Deprivation of Esophageal Boluses and Dry Forage Intake in Large-type Goats

  • Van Thang, Tran;Sunagawa, Katsunori;Nagamine, Itsuki;Kato, Seiyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.9
    • /
    • pp.1174-1183
    • /
    • 2010
  • In goats fed on dry forage twice a day, an esophageal fistula was used to investigate the physiological factors present in the marked suppression of dry forage intake that occurs after 40 min of feeding. The animals used in this study were five large-type male esophageal- and ruminal-fistulated goats. Roughly crushed alfalfa hay cubes with any large remaining chunks removed were used as feed for this research. The study was conducted under both normal feeding conditions (NFC) and sham feeding conditions (SFC). In the NFC control, the esophageal fistulae were closed by plugs and the animals ate dry forage in the normal manner. In the SFC treatment, before starting the experiment the plugs for closing the esophageal fistula were removed and the cannulae for collecting boluses were fitted into the fistulae. Therefore, the esophageal boluses were removed via an esophageal fistula before they entered the rumen. In the NFC control, eating rates sharply decreased in the first 40 min of feeding and were subsequently maintained at low levels. However, eating rates in the SFC treatment remained high after 40 min of the feeding period had elapsed and the goats ate continuously during the 2 h feeding period. In comparison with the NFC control ($1,794{\pm}203.80\;g$/2 h), cumulative dry forage intake in the SFC treatment ($3,182{\pm}381.69\;g$/2 h) was 77.4% greater (p<0.05) upon conclusion of the 2 h feeding period. In the SFC treatment, cumulative bolus output ($6,804{\pm}469.92\;g$/2 h) was about twofold the cumulative dry forage intake due to cumulative salivary secretion volume ($3,622{\pm}104.13\;g$/2 h) upon conclusion of the 2 h feeding period. The result indicates that large amounts of secreted saliva during dry forage feeding act in conjunction with consumed feed to form the ruminal load responsible for ruminal distension. The increased plasma total protein concentrations were higher in the SFC treatment than in the NFC control. However, plasma and ruminal fluid osmolalities increased in the NFC control during and after feeding but were mostly unchanged in the SFC treatment. In comparison with the NFC control ($3,440{\pm}548.04\;g$/30 min), thirst level in the SFC treatment ($1,360{\pm}467.02\;g$/30 min) was 60.5% significantly less (p<0.05) upon conclusion of the 30 min drinking period. The results of the present study indicate that In the second hour of the 2 h feeding period, dry forage intake is regulated by factors produced when boluses enter the rumen.

A Physiological Stimulating Factor of Water Intake during and after Dry Forage Feeding in Large-type Goats

  • Thang, Tran Van;Sunagawa, Katsunori;Nagamine, Itsuki;Kishi, Tetsuya;Ogura, Go
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.502-514
    • /
    • 2012
  • When ruminants consume dry forage, they also drink large volumes of water. The objective of this study was to clarify which factor produced when feed boluses enter the rumen is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period in large-type goats fed on dry forage for 2 h twice daily. Six large-type male esophageal- and ruminal-fistulated goats (crossbred Japanese Saanen/Nubian, aged 2 to 6 years, weighing $85.1{\pm}4.89kg$) were used in two experiments. In experiment 1, the water deprivation (WD) control and the water availability (WA) treatment were conducted to compare changes in water intake during and after dry forage feeding. In experiment 2, a normal feeding conditions (NFC) control and a feed bolus removal (FBR) treatment were carried out to investigate whether decrease in circulating plasma volume or increase in plasma osmolality is mainly responsible for the marked increase in water intake in the second hour of the 2 h feeding period. The results of experiment 1 showed that in the WA treatment, small amounts of water were consumed during the first hour of feeding while the majority of water intake was observed during the second hour of the 2 h feeding period. Therefore, the amounts of water consumed in the second hour of the 2 h feeding period accounted for 82.8% of the total water intake. The results of experiment 2 indicated that in comparison with the NFC control, decrease in plasma volume in the FBR treatment, which was indicated by increase in hematocrit and plasma total protein concentrations, was higher (p<0.05) in the second hour of the 2 h feeding period. However, plasma osmolality in the FBR treatment was lower (p<0.05) than compared to the NFC control from 30 min after the start of feeding. Therefore, thirst level in the FBR treatment was 82.7% less (p<0.01) compared with that in the NFC control upon conclusion of the 30 min drinking period. The results of the study indicate that the increased plasma osmolality in the second hour of the 2 h feeding period is the main physiological stimulating factor of water intake during and after dry forage feeding in large-type goats.

Determination of the dietary lysine requirement by measuring plasma free lysine concentrations in rainbow trout Oncorhynchus mykiss after dorsal aorta cannulation

  • Yun, Hyeonho;Park, Gunjun;Ok, Imho;Katya, Kumar;Hung, Silas SO;Bai, Sungchul C.
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.1
    • /
    • pp.4.1-4.7
    • /
    • 2016
  • This study evaluated the dietary lysine requirement by measuring the plasma free lysine concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A basal diet containing 36.6 % crude protein (29.6 % crystalline amino acids mixture, 5 % casein and 2 % gelatin) was formulated to one of the seven L-amino acid based diets containing graded levels of lysine (0.72, 1.12, 1.52, 1.92, 2.32, 2.72 or 3.52 % dry diet). A total of 35 fish averaging $512{\pm}6.8g$ ($mean{\pm}SD$) were randomly distributed into seven groups with five fish in each group. After 48 h of feed deprivation, each group of fish was fed one of the experimental diets by intubation at 1 % body weight. Blood samples were taken at 0, 5 and 24 h after intubation. Post-prandial plasma free lysine concentrations (PPlys, 5 h after intubation) of fish fed diets containing ${\geq}2.32%$ lysine were higher than those of fish fed diets containing ${\leq}1.92%$ lysine. Post-absorptive free lysine concentrations (PAlys, 24 h after intubation) of fish fed diets containing 2.32 and 3.52 % lysine were higher than those of fish fed diets containing ${\leq}1.52%$ lysine. The brokenline regression analysis on the basis of PPlys and PAlys indicated that the lysine requirement of rainbow trout could be 2.34 and 2.20 % in diet. Therefore, these results strongly suggested that the dietary lysine requirement based on the broken-line model analyses of PPlys and PAlys could be greater than 2.20 % but less than 2.34 % (corresponding to be $6.01%{\leq},but{\leq}6.39%$ in dietary protein basis, respectively) in rainbow trout. Also, these results shown that the quantitative estimation of lysine requirement by using PPlys and PAlys could be an acceptable method in fish.

Effects of Dietary Nutrient Composition on Compensatory Growth of Grower Olive Flounder Paralichthys olivaceus under Different Feeding Regimes at Suboptimal Temperature

  • Kim, Kyoung-Tae;Choi, In-Cheol;Cho, Young-Jin;Lee, Jong-Ha;Kang, Yong-Jin;Cho, Sung-Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.294-299
    • /
    • 2010
  • The effects of dietary nutrient composition on compensatory growth of grower olive flounder (Paralichthys olivaceus) under different feeding regimes at suboptimal temperature were determined. Four hundred five fish weighing 271.2 g were distributed into 27 300 L flow-through tanks (15 fish per tank). Nine treatments were prepared in triplicate: fish were hand-fed with control (C) diet for 12 weeks (12WF-C); four groups of fish were starved for 1 week and then fed C, high-protein (HP), high-lipid (HL), or combined high-protein and high-lipid (HPL) diets for 11 weeks; these groups are referred to as 11WF-C, 11WF-HP, 11WF-HL, and 11WF-HPL, respectively. Four other groups of fish were starved for 2 weeks and then fed C, HP, HL, and HPL diets for 10 weeks; these groups are referred to as 10WF-C, 10WF-HP, 10WF-HL, and 10WF-HPL, respectively. Weight gain and specific growth rate of fish from 12WF-C group were greater than those of fish from 11WF-C, 11WF-HP, 11WF-HL, 10WF-C, 10WFHP, and 10WF-HL groups, but not different from those of fish from 11WF-HPL and 10WF-HPL groups. Feed-efficiency ratio of fish from 12WF-C, 11WF-HP, 11WF-HPL, 10WF-HL, and 10WF-HPL groups was higher than that of fish in 11WF-C, 11WF-HL, 10WF-C, and 10WF-HP groups. The results of this study demonstrated that grower olive flounder subjected to 1- or 2-week feed deprivation were able to achieve full compensatory growth at suboptimal temperature only when fed HPL diet.

Re-evaluation of Dietary Methionine Requirement by Plasma Methionine and Ammonia Concentrations in Surgically Modified Rainbow Trout, Oncorhynchus mykiss

  • Bae, Jun-Young;Ok, Im-Ho;Lee, Seung-Hyung;Hung, Silas S.O.;Min, Tae-Sun;Bai, Sung-Chul C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.974-981
    • /
    • 2011
  • This study was designed to re-evaluate the dietary methionine requirement by means of the plasma methionine and ammonia concentrations in surgically modified rainbow trout, Oncorhynchus mykiss. A total of 35 rainbow trout averaging $505{\pm}6.5$ g (initial body weight, mean${\pm}$SD) were randomly distributed into seven groups with five fish in each group. After 48 h of feed deprivation, each group of fish was fed one of seven L-amino acid based diets containing 0.5% cystine and graded levels of methionine (0.25, 0.40, 0.50, 0.60, 0.70, 0.80 or 0.95% of diet, dry matter bases) by intubation at 1% body weight on dry matter basis. Blood samples were taken at 0, 5 and 24 h after intubation. Post-prandial plasma free methionine concentrations (PPmet, 5 h after intubation) and post-absorptive plasma free methionine concentrations (PAmet, 24 h after intubation) of fish fed diets containing 0.60% or higher methionine were significantly (p<0.05) higher than those of fish fed diets containing 0.50% or lower methionine. PPmet and PAmet in fish fed diets containing 0.60% or higher methionine were not significantly different except PPmet of fish fed diet containing 0.95% methionine. Post-prandial plasma ammonia concentrations (PPA, 5 h after intubation) of fish fed diets containing 0.70% or higher methionine were significantly higher than those of fish fed diets containing 0.60% or lower methionine, and PPA of fish fed diets containing 0.25 and up to 0.60% methionine were not significantly different from each other. Broken-line model analyses on PPmet, PAmet, and PPA indicated that the dietary methionine requirement of rainbow trout was between 0.59 (1.69) and 0.67 (1.91) % of diets (% dietary protein bases) when the diets contained 0.5% cystine.

A Study on the Psychopharmacological Actions of Panax ginseng in Animals (인삼의 향정신작용에 관한 연구)

  • Hong, Sa-Ack;Kim, Myeong-Seok;Jang, Hyeon-Gap
    • Journal of Ginseng Research
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 1976
  • As a continuation of series of works on the pharmacological actions of Panax ginseng. three kinds of behavioral experiments were carried out using rats and mice. The occurrence of component Posterns of general behavioral activity in rat was examined by visual scanning using the ting sample method in the ad lib. And he hunger deprivated situation. In normal ad lib. situation, the eating behavior of rat treated with 100mg/kg of ginseng saponin was significantly more frequent than that of saline control at the night and throughout the 24 hr period. But grooming was less frequent than the control at the same period. In the hunger situation followed by 90~120 hrs of feed deprivation, the locomotive activity and rearing awe significantly more often and sleeping was less frequent in the two dosage g roups of ginseng saponin (10 and 100 mg/kg) than in the saline group though out the observation period. Training of avoidance conditioning in rats was done in a two-way shuttle box. The number of conditioned response (CR) in which the animal avoided sucessfully an electric shock by running in to the other compartment of the hex was regarded as an index of learning performance. Ginseng saponin in doses of 2.5 mg/kg Produced a significantly increased CR in total avoidance tria1s compared with the control. Although other dosage groups of ginseng saponin (5.0, 50mg and 100 mg/kg) showed no significant statistical difference from the normal control, it tended to increase in CR in the ginseng groups than in the control. An aggressive behavior in mice was observed in n shock-generating fighting box. The occurrence of reflexive fighting between two animals induced by an electric shock applied to the feet war checked as an index of aggression. The occurrence of reciprocal fighting episode immediately after the onset. Of the shock was significantly decreased in the dosage group of 400 mg/kg ginseng saponin, but it did net differ in the 100 mg/kg group of ginseng saponin from the control group. The dose, 400 mg/kg of ginseng saponin, inhibited fighting behavior in more than 80% of the Pairs. but 100 mg/kg of ginseng did inhibit it in less than 20% of the pairs.

  • PDF