Browse > Article
http://dx.doi.org/10.5713/ajas.14.0495

Evaluation of Optimum Dietary Threonine Requirement by Plasma Free Threonine and Ammonia Concentrations in Surgically Modified Rainbow Trout, Oncorhynchus mykiss  

Yun, Hyeonho (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
Park, Gunjun (Woosung Feed Co., Ltd.)
Ok, Imho (Aqua leader, Co., Ltd.)
Katya, Kumar (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
Heung, Silas (Department of Animal Science, University of California)
Bai, Sungchul C. (Department of Marine Bio-Materials and Aquaculture/Feeds and Foods Nutrition Research Center, Pukyong National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.4, 2015 , pp. 551-558 More about this Journal
Abstract
This study was carried out to evaluate the dietary threonine requirement by measuring the plasma free threonine and ammonia concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A total of 70 fish (average initial weight $506{\pm}8.2g$) were randomly distributed into each of the 14 net cages (5 fish/cage). After 48 hours (h) of feed deprivation, each group was intubated at 1% body weight with one of the seven L-amino acid based diets containing graded levels of threonine (0.42%, 0.72%, 0.92%, 1.12%, 1.32%, 1.52%, or 1.82% of diet, dry matter basis). Blood samples were taken at 0, 5, and 24 h after intubation. Post-prandial plasma free threonine concentrations (PPthr) of fish 5 h after intubation with diets containing 1.32% or more threonine were significantly higher than those of fish intubated with diets containing 1.12% or less threonine (p<0.05). Post-absorptive free threonine concentrations (PAthr) after 24 h of intubation of the fish with diets containing 0.92% or more threonine were significantly higher than those of fish intubated with diets containing 0.72% or less threonine. Post-prandial plasma ammonia concentrations (PPA, 5 h after intubation) were not significantly different among fish intubated with diets containing 1.12% or less threonine, except the PPA of fish intubated with diet containing 0.42% threonine. Broken-line model analyses of PPthr, PAthr, and PPA indicated that the dietary threonine requirement of rainbow trout should be between 0.95% (2.71) and 1.07% (3.06) of diet (% of dietary protein on a dry matter basis).
Keywords
Rainbow Trout; Threonine; Plasma; Dorsal Aorta Cannulation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Akiyama, T., S. Arai, and T. Murai. 1985. Threonine, histidine, and lysine requirement of chum salmon fry. Bull. Jpn. Soc. Sci. Fish 51:635-639.   DOI
2 Alam, M. S., S. Teshima, S. Koshio, S. Yokoyama, and M. Ishikawa. 2003. Optimum dietary threonine level for juvenile Japanese founder, Paralichthys olivaceus. Asian Fish. Sci. 16:175-184.
3 Bae, J. Y., I. H. Ok, S. Lee, S. S. O. Hung, T. S. Min, and S. C. Bai. 2011. Re-evaluation of dietary methionine requirement by plasma methionine and ammonia concentrations in surgically modified rainbow trout, Oncorhynchus mykiss. J. Appl. Ichthyol. 27:887-891.   DOI   ScienceOn
4 Bai, S. C., I. H. Ok, G. J. Park, K. W. Kim, and S. M. Choi. 2003. Development of modeling system for assessing essential amino acid requirements using surgically modified rainbow trout. J. Aquac. 16:1-7.
5 Bodin, N., M. Mambrini, J. B. Wauters, T. Abboudi, W. Ooghe, E. L. Boulenge, Y. Larondelle, and X. Rollin. 2008. Threonine requirements for rainbow trout (Oncorhynchus mykiss) and Atlantic salmon, (Salmo salar) at the fry stage are similar. Aquaculture 274:353-365.   DOI   ScienceOn
6 Boren, R. S. and M. Gatlin. 1995. Dietary threonine requirement of juvenile red drum Sciaenops ocellatus. J. World Aquac. Soc. 3:279-283.
7 Dabrowski, K. 1982. Postprandial distribution of free amino acids between plasma and erythrocytes of common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. Part A Physiol. 72A:753-763.
8 Halver, J. E. and W. E. Shanks. 1960. Nutrition of salmonoid fishes: VIII. Indispensable amino acids for sockeye salmon. J. Nutr. 72:340-346.   DOI
9 Houston, A. H. 1990. Blood and circulation. In: Methods for Fish Biology (Eds. C. B. Schreck and P. B. Moyle). American Fisheries Society, New York, USA. pp. 273-343.
10 Kaushik, S. J., B. Fauconneau, L. Terrier, and J. Gras. 1988. Arginine requirement and status assessed by different biochemical indices in rainbow trout (Salmo gairdneri R.). Aquaculture 70:75-95.   DOI   ScienceOn
11 Kim, K. I. 1997. Reevaluation of protein and amino acid requirements of rainbow trout (Oncorhynchus mykiss). Aquaculture 151:3-7.   DOI   ScienceOn
12 Ogino, C. 1980. Requirements of carp and rainbow trout for essential amino acids. Bull. Jpn. Soc. Sci. Fish. 46:171-174.   DOI
13 Kim, K. I., T. B. Kayes, and C. H. Amundson. 1992. Requirements for sulfur amino acids and utilization of D-methionine by rainbow trout (Oncorhynchus mykiss). Aquaculture 101:95-103.   DOI   ScienceOn
14 Koshio, S., S. Teshima, A. Kanazawa, and T. Watase. 1993. The effect of dietary protein content on growth, digestion efficiency and nitrogen excretion of juvenile kuruma prawns, Penaeus japonicus. Aquaculture 113:101-114.   DOI   ScienceOn
15 Ng, W. K. and S. S. O. Hung. 1995. Estimating the ideal dietary indispensable amino acid pattern for growth of white sturgeon, Acipenser transmontanus (Richardson). Aquac. Nutr. 1:85-94.   DOI
16 Robbins, K. R., H. W. Norton, and D. H. Baker. 1979. Estimation of nutrient requirements from growth data. J. Nutr. 109:1710-1714.   DOI
17 Robinson, E. H., R. P. Wilson, and W. E. Poe. 1981. Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish. J. Nutr. 111:46-52.   DOI
18 Rodehutscord, M., J. Stephan, P. Michael, and P. Ernst. 1995. Growing from 50 to 150 g to supplements of DL-methionine in a semipurified diet containing low or high levels of cystine. J. Nutr. 125:964-969.
19 Rodehutscord, M., A. Becker, M. Pack, and E. Pfeffer. 1997. Response of rainbow trout (Oncorhynchus mykiss) to supplements of individual essential amino acids in a semipurified diet, including an estimate of the maintenance requirement of essential amino acids. J. Nutr. 126:1166-1175.
20 Rollin, X., M. Mambrini, T. Abboudi, Y. Larondelle, and S. Kaushik. 2003. The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. Br. J. Nutr. 90:865-876.   DOI   ScienceOn
21 Thebault, H., E. Alliota, and A. Pastoureauda. 1985. Quantitative methionine requirement of juvenile sea-bass (Dicentrarchus labrax). Aquaculture 50:75-87.   DOI   ScienceOn
22 Ruchimat, T., T. Masumoto, H. Hosokawa, Y. Itoh, and S. Shimeno. 1997. Quantitative lysine requirement of yellowtail (Seriola quinqueradiata). Aquaculture 158:331-339.   DOI   ScienceOn
23 Schuhmacher, A., V. Wax, and J. M. Gropp. 1997. Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet. Aquaculture 151:15-28.   DOI   ScienceOn
24 Sunde, J., A. Kiessling, D. Higgs, J. Opstvedt, G. Venturini, and K. R. Torrissen. 2003. Evaluation of feed protein quality by measuring plasma free amino acids in Atlantic salmon (Salmo salar L.) after dorsal aorta cannulation. Aquac. Nutr. 9:351-360.   DOI   ScienceOn
25 Tibaldi, E. and F. Tulli. 1999. Dietary threonine requirement of juvenile European sea bass (Dicentrarchus labrax). Aquaculture 175:155-166.   DOI   ScienceOn
26 Wilson, R. P. 2002. Amino acids and proteins. In: Fish Nutrition (J. E. Halver, and R. W. Hardy). 3rd ed., Academic Press, San Diego, CA, USA. pp. 143-179.
27 Zhou, Q. C., Z. H. Wu, S. Y. Chi, and Q. H. Yang. 2007. Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture 273:634-640.   DOI   ScienceOn
28 Zicker, S. C. and Q. R. Rogers. 1990. Use of plasma amino acid concentration in the diagnosis of nutritional and metabolic diseases in veterinary medicine. In: Proc. 6th Congress Internat (Ed. J. J. Kanedo). Society for Animal Clinical Biochemistry, Davis, CA, USA. pp. 107-212.