• Title/Summary/Keyword: Federated Learning

Search Result 76, Processing Time 0.026 seconds

DRM-FL: A Decentralized and Randomized Mechanism for Privacy Protection in Cross-Silo Federated Learning Approach (DRM-FL: Cross-Silo Federated Learning 접근법의 프라이버시 보호를 위한 분산형 랜덤화 메커니즘)

  • Firdaus, Muhammad;Latt, Cho Nwe Zin;Aguilar, Mariz;Rhee, Kyung-Hyune
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.264-267
    • /
    • 2022
  • Recently, federated learning (FL) has increased prominence as a viable approach for enhancing user privacy and data security by allowing collaborative multi-party model learning without exchanging sensitive data. Despite this, most present FL systems still depend on a centralized aggregator to generate a global model by gathering all submitted models from users, which could expose user privacy and the risk of various threats from malicious users. To solve these issues, we suggested a safe FL framework that employs differential privacy to counter membership inference attacks during the collaborative FL model training process and empowers blockchain to replace the centralized aggregator server.

A Survey on Threats to Federated Learning (연합학습의 보안 취약점에 대한 연구동향)

  • Woorim Han;Yungi Cho;Yunheung Paek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.230-232
    • /
    • 2023
  • Federated Learning (FL) is a technique that excels in training a global model using numerous clients while only sharing the parameters of their local models, which were trained on their private training datasets. As a result, clients can obtain a high-performing deep learning (DL) model without having to disclose their private data. This setup is based on the understanding that all clients share the common goal of developing a global model with high accuracy. However, recent studies indicate that the security of gradient sharing may not be as reliable as previously thought. This paper introduces the latest research on various attacks that threaten the privacy of federated learning.

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.

Blockchain-based Federated Learning for Intrusion Detection in IoT Networks (IoT 네트워크에서 침입 탐지를 위한 블록체인 기반 연합 학습)

  • Md Mamunur Rashid;Philjoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.262-264
    • /
    • 2023
  • Internet of Things (IoT) networks currently employ an increased number of users and applications, raising their susceptibility to cyberattacks and data breaches, and endangering our security and privacy. Intrusion detection, which includes monitoring and analyzing incoming and outgoing traffic to detect and prohibit the hostile activity, is critical to ensure cybersecurity. Conventional intrusion detection systems (IDS) are centralized, making them susceptible to cyberattacks and other relevant privacy issues because all the data is gathered and processed inside a single entity. This research aims to create a blockchain-based architecture to support federated learning and improve cybersecurity and intrusion detection in IoT networks. In order to assess the effectiveness of the suggested approach, we have utilized well-known cybersecurity datasets along with centralized and federated machine learning models.

Harvest Forecasting Improvement Using Federated Learning and Ensemble Model

  • Ohnmar Khin;Jin Gwang Koh;Sung Keun Lee
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.9-18
    • /
    • 2023
  • Harvest forecasting is the great demand of multiple aspects like temperature, rain, environment, and their relations. The existing study investigates the climate conditions and aids the cultivators to know the harvest yields before planting in farms. The proposed study uses federated learning. In addition, the additional widespread techniques such as bagging classifier, extra tees classifier, linear discriminant analysis classifier, quadratic discriminant analysis classifier, stochastic gradient boosting classifier, blending models, random forest regressor, and AdaBoost are utilized together. These presented nine algorithms achieved exemplary satisfactory accuracies. The powerful contributions of proposed algorithms can create exact harvest forecasting. Ultimately, we intend to compare our study with the earlier research's results.

Distributed Federated Learning-based Intrusion Detection System for Industrial IoT Networks (산업 IoT 전용 분산 연합 학습 기반 침입 탐지 시스템)

  • Md Mamunur Rashid;Piljoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.151-153
    • /
    • 2023
  • Federated learning (FL)-based network intrusion detection techniques have enormous potential for securing the Industrial Internet of Things (IIoT) cybersecurity. The openness and connection of systems in smart industrial facilities can be targeted and manipulated by malicious actors, which emphasizes the significance of cybersecurity. The conventional centralized technique's drawbacks, including excessive latency, a congested network, and privacy leaks, are all addressed by the FL method. In addition, the rich data enables the training of models while combining private data from numerous participants. This research aims to create an FL-based architecture to improve cybersecurity and intrusion detection in IoT networks. In order to assess the effectiveness of the suggested approach, we have utilized well-known cybersecurity datasets along with centralized and federated machine learning models.

Research on Optimization Strategies for Random Forest Algorithms in Federated Learning Environments (연합 학습 환경에서의 랜덤 포레스트 알고리즘 최적화 전략 연구)

  • InSeo Song;KangYoon Lee
    • The Journal of Bigdata
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2024
  • Federated learning has garnered attention as an efficient method for training machine learning models in a distributed environment while maintaining data privacy and security. This study proposes a novel FedRFBagging algorithm to optimize the performance of random forest models in such federated learning environments. By dynamically adjusting the trees of local random forest models based on client-specific data characteristics, the proposed approach reduces communication costs and achieves high prediction accuracy even in environments with numerous clients. This method adapts to various data conditions, significantly enhancing model stability and training speed. While random forest models consist of multiple decision trees, transmitting all trees to the server in a federated learning environment results in exponentially increasing communication overhead, making their use impractical. Additionally, differences in data distribution among clients can lead to quality imbalances in the trees. To address this, the FedRFBagging algorithm selects only the highest-performing trees from each client for transmission to the server, which then reselects trees based on impurity values to construct the optimal global model. This reduces communication overhead and maintains high prediction performance across diverse data distributions. Although the global model reflects data from various clients, the data characteristics of each client may differ. To compensate for this, clients further train additional trees on the global model to perform local optimizations tailored to their data. This improves the overall model's prediction accuracy and adapts to changing data distributions. Our study demonstrates that the FedRFBagging algorithm effectively addresses the communication cost and performance issues associated with random forest models in federated learning environments, suggesting its applicability in such settings.

Effective Adversarial Training by Adaptive Selection of Loss Function in Federated Learning (연합학습에서의 손실함수의 적응적 선택을 통한 효과적인 적대적 학습)

  • Suchul Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • Although federated learning is designed to be safer than centralized methods in terms of security and privacy, it still has many vulnerabilities. An attacker performing an adversarial attack intentionally manipulates the deep learning model by injecting carefully crafted input data, that is, adversarial examples, into the client's training data to induce misclassification. A common defense strategy against this is so-called adversarial training, which involves preemptively learning the characteristics of adversarial examples into the model. Existing research assumes a scenario where all clients are under adversarial attack, but considering the number of clients in federated learning is very large, this is far from reality. In this paper, we experimentally examine aspects of adversarial training in a scenario where some of the clients are under attack. Through experiments, we found that there is a trade-off relationship in which the classification accuracy for normal samples decreases as the classification accuracy for adversarial examples increases. In order to effectively utilize this trade-off relationship, we present a method to perform adversarial training by adaptively selecting a loss function depending on whether the client is attacked.

Clustering-Based Federated Learning for Enhancing Data Privacy in Internet of Vehicles

  • Zilong Jin;Jin Wang;Lejun Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1462-1477
    • /
    • 2024
  • With the evolving complexity of connected vehicle features, the volume and diversity of data generated during driving continue to escalate. Enabling data sharing among interconnected vehicles holds promise for improving users' driving experiences and alleviating traffic congestion. Yet, the unintentional disclosure of users' private information through data sharing poses a risk, potentially compromising the interests of vehicle users and, in certain cases, endangering driving safety. Federated learning (FL) is a newly emerged distributed machine learning paradigm, which is expected to play a prominent role for privacy-preserving learning in autonomous vehicles. While FL holds significant potential to enhance the architecture of the Internet of Vehicles (IoV), the dynamic mobility of vehicles poses a considerable challenge to integrating FL with vehicular networks. In this paper, a novel clustered FL framework is proposed which is efficient for reducing communication and protecting data privacy. By assessing the similarity among feature vectors, vehicles are categorized into distinct clusters. An optimal vehicle is elected as the cluster head, which enhances the efficiency of personalized data processing and model training while reducing communication overhead. Simultaneously, the Local Differential Privacy (LDP) mechanism is incorporated during local training to safeguard vehicle privacy. The simulation results obtained from the 20newsgroups dataset and the MNIST dataset validate the effectiveness of the proposed scheme, indicating that the proposed scheme can ensure data privacy effectively while reducing communication overhead.

FCBAFL: An Energy-Conserving Federated Learning Approach in Industrial Internet of Things

  • Bin Qiu;Duan Li;Xian Li;Hailin Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2764-2781
    • /
    • 2024
  • Federated learning (FL) has been proposed as an emerging distributed machine learning framework, which lowers the risk of privacy leakage by training models without uploading original data. Therefore, it has been widely utilized in the Industrial Internet of Things (IIoT). Despite this, FL still faces challenges including the non-independent identically distributed (Non-IID) data and heterogeneity of devices, which may cause difficulties in model convergence. To address these issues, a local surrogate function is initially constructed for each device to ensure a smooth decline in global loss. Subsequently, aiming to minimize the system energy consumption, an FL approach for joint CPU frequency control and bandwidth allocation, called FCBAFL is proposed. Specifically, the maximum delay of a single round is first treated as a uniform delay constraint, and a limited-memory Broyden-Fletcher-Goldfarb-Shanno bounded (L-BFGS-B) algorithm is employed to find the optimal bandwidth allocation with a fixed CPU frequency. Following that, the result is utilized to derive the optimal CPU frequency. Numerical simulation results show that the proposed FCBAFL algorithm exhibits more excellent convergence compared with baseline algorithm, and outperforms other schemes in declining the energy consumption.