It is very hard to find out Tongbanga-millhouse installed nearby a streamlet to use water with Tongbanga(a kind of water-mill) to polish cereals by pounding like a visage of its old days. It plays an important part in folkloric, architectural and educational aspects. The purpose of this study is to analyse the architectural features of Tongbanga and millhouse itself so that to find the way how to build and fabricate the materials and frame members. Therefore this study has been focused on the composition principle and fabrication method of Tongbanga-millhouse on the side of architecture. The fabrication methods of its house in accordance with regular sequences are as follows. ${\cdot}$ Firstly the decision of location of Tongbanga-millhouse and Hwak(a big mortar made of stone). ${\cdot}$ Slantly three rafter installation at an angle of $50^{\circ}$ to err on the safe side and then slantly fifteen rafter installation making a circular cone shape. ${\cdot}$ Installation of twigs to be circles from bottom to top. ${\cdot}$ Manifoldly covering of trunks peeling the barks from flax plants. ${\cdot}$ Threefoldly thatching with upside barks of oak trees. ${\cdot}$ Placing woods alike rafter on the bark thatches as a weight not to fly away by wind. ${\cdot}$ Binding woods alike rafter with vines of arrowroots to maintain the proper place. The decayed Tongbanga-millhouse by means of upper ways was restored out of all recognition.
최근 여러 목적으로 영상 정보를 제공하는 CCTV는 지능형으로 변화하고 있으며, 컴퓨터 비전을 이용한 자동화 응용 범위가 증가하고 있다. 보행자 및 차량 등의 정확한 인식을 위해 신뢰성이 높은 검출방법을 수행하여야 하며 이를 위해 다양한 방법들이 연구되고 있다. 본 논문에서는 다수의 보행자가 움직이는 상황에서 보행자의 세 가지 특징 정보를 획득하여 다수의 보행자들을 검출하는 방법을 제안한다. 제안하는 방법은 보행자 검출 및 추적에 실패하거나 혼동되는 상황을 최소화 하면서 각각의 보행자를 구별한다. 보행자들끼리 근접하거나 겹치는 경우 미리 저장된 프레임 특징 정보를 이용하여 보행자를 구별 및 검출한다.
본 연구에서는 일 학습병행제도의 연착륙과 성공적인 확산기반의 마련을 위해 효과적인 계약학과 운영모델을 제안하고자한다. 계약학과 운영과 관련한 당면과제 측면에서 보면 계약학과 입학생들은 특성화고나 마이스터고 출신들이고 성인이며 재직자이기 때문에 학업에 불리한 조건을 많이 가지고 있다. 따라서 학업부담을 완화시켜 주어야 하고, 탄력적인 학사운영이 필요하며, 낮은 학업능력 및 의욕을 보완해주어야 한다. 한편 직원들을 계약학과에 보내는 기업 입장에서는 현장 맞춤형 교육이 절실하게 요구된다. 이러한 당면과제들을 효과적으로 해소하기 위해 한기대는 S-OJT 교과목 도입, NCS 기반의 표준이수체계구축, 선행학습인정제도 활용, 역진행 학습(Flipped Classroom)의 도입, Tutor제 도입, 기초학습능력 지원을 위한 신규 교과목 개발 등 도전적인 방안들을 마련하였다. 이러한 시도가 성공적으로 정착된다면 우리나라 계약학과 제도를 한 단계 업그레이드 시키고 평생직업능력개발을 선도할 것으로 기대된다.
In this paper, we present an empirical study for improving the Korean text chunking based on machine learning and feature set selection approaches. We focus on two issues: the problem of selecting feature set for Korean chunking, and the problem of alleviating the data sparseness. To select a proper feature set, we use a heuristic method of searching through the space of feature sets using the estimated performance from a machine learning algorithm as a measure of "incremental usefulness" of a particular feature set. Besides, for smoothing the data sparseness, we suggest a method of using a general part-of-speech tag set and selective lexical information under the consideration of Korean language characteristics. Experimental results showed that chunk tags and lexical information within a given context window are important features and spacing unit information is less important than others, which are independent on the machine teaming techniques. Furthermore, using the selective lexical information gives not only a smoothing effect but also the reduction of the feature space than using all of lexical information. Korean text chunking based on the memory-based learning and the decision tree learning with the selected feature space showed the performance of precision/recall of 90.99%/92.52%, and 93.39%/93.41% respectively.
본 논문은 흡연으로 인한 화재사고 방지를 위해, 비디오 영상에서 흡연자를 검출하는 알고리즘을 제안한다. 흡연자의 행동을 인식하기 위해 행동 인식 기법의 계층적 방법 중 서술 기반 접근 방법을 기반으로 제안하는 알고리즘은 배경 영역 분리, 객체 검출, 이벤트 탐지, 이벤트 판단 과정으로 구성된다. 배경 영역 분리 과정으로 학습률이 다른 두 개의 가우시안 혼합 모델을 이용하여 입력 영상으로부터 고속 움직임 전경, 저속 움직임 전경 영상을 생성하고, 저속움직임 전경 영상을 chain-rule 기반 외곽선 검출 알고리즘을 통하여 객체의 위치를 추출해낸다. 위치 정보를 기반으로 흡연자의 세 가지 특징인 얼굴, 연기, 손의 움직임을 이벤트 탐지 과정에서 검출한다. Haar-like feature를 이용하여 얼굴을 검출하며, 고속 움직임 전경에서 연기의 발생 빈도수와 방향성을 반영하여 연기를 검출한다. 움직임 추정을 통해 반복적인 손의 움직임을 검출한다. 일정 구간의 비디오 시퀀스 내 객체들에 대하여, 검출된 특징들의 서술적 관계를 반영하여 각각의 객체가 흡연자인지 판단한다. 제안하는 방법은 실시간으로 여러 다른 객체들 사이에서 강인하게 흡연자를 검출한다.
크로마키 합성이란 텔레비전 방송국 또는 일반 스튜디오에서 사용되는 영상처리 기술로써, 블루스크린을 배경으로 하는 스튜디오에서 촬영된 영상의 파란부분을 컴퓨터 그래픽 또는 실영상으로 교체하여 합성하는 기술이다. 특히, 가상 스튜디오의 크로마키 합성은 배경영상을 카메라의 움직임에 연동하여 변화시킴으로써 기존 스튜디오보다 자연스러운 합성을 수행할 수 있다. 본 논문에서는 카메라의 움직임에 연동하여 블루스크린에 그려진 오각형패턴의 변화만을 인식하여 역으로 카메라 파라메터를 추출하는 방법을 제안하였다. 일반적으로 오각형패턴은 카메라의 움직임 즉 투영변환에 불변하는 특징을 가지고 있으므로 이를 이용하여 스크린 위의 오각형패턴과 촬영된 영상 위의 대응패턴을 용이하게 구할 수 있다. 그리고, 구해진 대응패턴과 대응점을 이용하여 평면의 투영 변환식을 구하고 이를 변형된 Tsai의 방법을 사용하여 카메라 파라메터를 추출한다. 실험 결과를 통하여 제안된 방법이 원래의 Tsai의 방법보다 정확한 카메라 파라메터를 구할 수 있었으며 Pentium-MMX PC에서 초당 12 프레임의 카메라 파라메터를 추출할 수 있었다.
본 연구는 초등수학에서 수학적 모델링에 대한 적용 필요성에 대해 알아보았으며, 이를 위해 이론적 문헌 분석에 초점을 두었다. 우리나라 수학교육은 학생들의 높은 성취도에도 불구하고 여러 문제점들을 안고 있다. 수학적 모델링은 이러한 문제점들을 해결하는데 중요한 역할을 할 수 있을 것으로 예상되며, 이러한 점에서 본 연구에서는 수학적 모델링이 학교수학의 유의미한 목표 및 방법으로써 연구자들의 관심을 갖게 된 배경과 수학적 모델링의 정의, 그리고 문제해결과 수학적 모델링의 유사점과 차이점을 살펴보았다. 그리고 잘 알려진 세 가지 수학적 모델링의 과정을 제시하고 각 모델링 과정의 특징을 살펴보았다. 또한, 초등수학에서 수학적 모델링이 적용된 국내와 외국의 연구 사례를 제시하였다. 마지막으로 결론 부분에서는 초등수학에서 수학적 모델링 연구의 문제점 및 우리나라에서 초등학교 수학과 교육과정에서 다루어야 할 필요성과 의미에 대해 제시하고, 또한 교사들의 수학적 모델링에 대한 인식에 대해서도 생각해 보았다.
전력부족현상으로 대기전력에 대한 관심이 증가하고 있다. 대부분의 전자기기는 본래의 기능을 사용하지 않는 대기상태로 존재하며, 대기상태 중에서도 많은 전력을 소비한다. 이러한 대기상태로 인한 전력소비를 방지하기 위해 많은 나라에서 스마트 플러그에 관한 연구가 진행되었다. 그러나 이러한 스마트 플러그의 경우, 기능의 특성상 고가의 경우가 많으며, 사용자의 수동제어 또는 동작감지 센서 및 사용자 패턴에 의해 대기전력을 차단하게 된다. 이러한 기능은 동작감지 센서의 오작동, 사용자 패턴의 다양화에 따라 장점을 가지지 못한다. 본 연구에서는 사용자 스마트폰의 블루투스 기능과 연동하는 멀티플러그 타입의 스마트 플러그를 개발하였다. 사용자의 스마트폰을 이용하여 사용자 위치판단을 하고, 사용자 위치에 따라 능동적으로 스마트 플러그에서 각 전자기기의 대기전력을 차단함으로 전자기기들의 대기전력으로부터 소비되는 전력을 줄일 수 있음을 확인하였다.
수중 표적 탐지 및 식별은 군사 및 비군사적으로 중요한 문제이다. 최근 패턴인식 분야에서 딥러닝 기술이 발전되면서 많은 성능개선 결과가 발표되고 있다. 그중 DBN(Deep Belief Network)기법은 DNN(Deep Neural Network)을 사전 훈련하는데 사용되어 좋은 성능을 보여주고 있다. 본 논문에서는 능동 소나를 이용한 수중 표적의 식별 문제에 DBN을 사용하여 실험을 진행하고, 그 결과를 비교하였다. 표적신호는 3차원 하이라이트 모델을 사용하여 합성된 능동 소나 신호를 사용하였고, 특징추출 방법으로는 FrFT(Fractional Fourier Transform) 기반의 특징추출을 사용하였다. 단일 센서, 즉, 단일 방위 데이터 기반의 실험에서 DBN을 이용한 식별 결과는 기존의 BPNN(Back Propagation Neural Network)에 비해 약 3.83 % 향상되었다. 또한, 다중 방위 기반의 식별 실험에서는 관측열의 개수가 3을 초과하면 95% 이상의 성능을 얻을 수 있었다.
실제 환경에서 사람의 일상적인 활동을 학습하는 기술은 스마트 비서나 자율지능 로봇과 같은 인지 지능 시스템 개발을 위해 필요한 핵심 기술이다. 일상을 예측하는 대다수의 연구들은 센서 데이터의 패턴과 일상 활동 사이의 직접적인 상관관계를 탐색하는 것에 집중하였다. 하지만 일상에서의 인간 활동은 하나의 레이블로 표현하기 어려운 다수의 사건 집합이고 또한 서술 가능한 특성을 지니고 있다. 본고에서는 일상을 구성하는 사건 요소들을 우선 인식하고, 이후 일상 활동을 학습 및 예측하는 방법을 제안한다. 제안하는 방법은 개인의 일상에서 웨어러블 장치와 스마트폰으로부터 수집된 일인칭 시점의 멀티 센서 데이터로부터 위치 좌표, 장면 영상, 그리고 신체적 움직임에 기인한 사건 요소들을 각각 인식한 뒤, 이 정보들이 특정 활동 내역에 따라 조합되는 규칙을 학습하여 최종적으로 사용자의 일상 활동을 예측한다. 두 명의 실험 참가자가 각각 2주간 수집한 센서 데이터를 이용하여 실험한 결과는 제안한 방법이 센서 데이터로부터 추출된 특징을 일차적으로 사용하여 분류하는 기존의 방법과 비교하여 향상된 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.