• 제목/요약/키워드: FeatureSelection

검색결과 1,094건 처리시간 0.035초

러프집합 이론을 이용한 러프 엔트로피 기반 지식감축 (Rough Entropy-based Knowledge Reduction using Rough Set Theory)

  • 박인규
    • 디지털융복합연구
    • /
    • 제12권6호
    • /
    • pp.223-229
    • /
    • 2014
  • 대용량의 지식베이스 시스템에서 유용한 정보를 추출하여 효율적인 의사결정을 수행하기 위해서는 정제된 특징추출이 필수적이고 중요한 부분이다. 러프집합이론에 있어서 최적의 리덕트의 추출과 효율적인 객체의 분류에 대한 문제점을 극복하고 자, 본 연구에서는 조건 및 결정속성의 효율적인 특징추출을 위한 러프엔트로피 기반 퀵리덕트 알고리듬을 제안한다. 제안된 알고리듬에 의해 유용한 특징을 추출하기 위한 조건부 정보엔트로피를 정의하여 중요한 특징들을 분류하는 과정을 기술한다. 또한 본 연구의 적용사례로써 실제로 UCI의 5개의 데이터에 적용하여 특징을 추출하는 시뮬레이션을 통하여 본 연구의 모델링이 기존의 방법과 비교결과, 제안된 방법이 효율성이 있음을 보인다.

유전자 알고리즘과 Feature Wrapping을 통한 마이크로어레이 데이타 중복 특징 소거법 (Removing Non-informative Features by Robust Feature Wrapping Method for Microarray Gene Expression Data)

  • 이재성;김대원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권8호
    • /
    • pp.463-478
    • /
    • 2008
  • 본 논문에서는 유전자 사이의 상관계수가 높은 마이크로어레이 데이타에 대하여 제안하는 알고리즘을 통해 상관계수가 낮은 유전자들의 부집합을 만들고, 이에 대해 적합 함수를 통한 평가로 기존 방법론이 가지는 한계를 극복할 수 있도록 하였다. 기존 방법론은 개별 특징의 평가를 통해 중복 특징을 제거하며, 상관계수에 대한 고려가 없어 선택된 유전자 부집합들의 상관계수가 논은 문제가 있었다. 이에 따라 제안하는 알고리즘은 특징간의 관계를 평가하는 Feature Wrapping 기법을 활용하여, 추출된 유전자 부집합에 포함된 유전자 사이의 상관관계가 낮고, 클래스 구분력이 높은 특징을 갖도록 하였다.

Identification of Chinese Event Types Based on Local Feature Selection and Explicit Positive & Negative Feature Combination

  • Tan, Hongye;Zhao, Tiejun;Wang, Haochang;Hong, Wan-Pyo
    • Journal of information and communication convergence engineering
    • /
    • 제5권3호
    • /
    • pp.233-238
    • /
    • 2007
  • An approach to identify Chinese event types is proposed in this paper which combines a good feature selection policy and a Maximum Entropy (ME) model. The approach not only effectively alleviates the problem that classifier performs poorly on the small and difficult types, but improve overall performance. Experiments on the ACE2005 corpus show that performance is satisfying with the 83.5% macro - average F measure. The main characters and ideas of the approach are: (1) Optimal feature set is built for each type according to local feature selection, which fully ensures the performance of each type. (2) Positive and negative features are explicitly discriminated and combined by using one - sided metrics, which makes use of both features' advantages. (3) Wrapper methods are used to search new features and evaluate the various feature subsets to obtain the optimal feature subset.

Speech Feature Selection of Normal and Autistic children using Filter and Wrapper Approach

  • Akhtar, Muhammed Ali;Ali, Syed Abbas;Siddiqui, Maria Andleeb
    • International Journal of Computer Science & Network Security
    • /
    • 제21권5호
    • /
    • pp.129-132
    • /
    • 2021
  • Two feature selection approaches are analyzed in this study. First Approach used in this paper is Filter Approach which comprises of correlation technique. It provides two reduced feature sets using positive and negative correlation. Secondly Approach used in this paper is the wrapper approach which comprises of Sequential Forward Selection technique. The reduced feature set obtained by positive correlation results comprises of Rate of Acceleration, Intensity and Formant. The reduced feature set obtained by positive correlation results comprises of Rasta PLP, Log energy, Log power and Zero Crossing Rate. Pitch, Rate of Acceleration, Log Power, MFCC, LPCC is the reduced feature set yield as a result of Sequential Forwarding Selection.

A study of creative human judgment through the application of machine learning algorithms and feature selection algorithms

  • Kim, Yong Jun;Park, Jung Min
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.38-43
    • /
    • 2022
  • In this study, there are many difficulties in defining and judging creative people because there is no systematic analysis method using accurate standards or numerical values. Analyze and judge whether In the previous study, A study on the application of rule success cases through machine learning algorithm extraction, a case study was conducted to help verify or confirm the psychological personality test and aptitude test. We proposed a solution to a research problem in psychology using machine learning algorithms, Data Mining's Cross Industry Standard Process for Data Mining, and CRISP-DM, which were used in previous studies. After that, this study proposes a solution that helps to judge creative people by applying the feature selection algorithm. In this study, the accuracy was found by using seven feature selection algorithms, and by selecting the feature group classified by the feature selection algorithms, and the result of deriving the classification result with the highest feature obtained through the support vector machine algorithm was obtained.

사용자의 False belief를 이용한 새로운 기능 선택방식에 대한 연구 (Development of a feature selection technique on users' false beliefs)

  • 이장선;최경현;김지은;류호경
    • 한국HCI학회논문지
    • /
    • 제9권2호
    • /
    • pp.33-40
    • /
    • 2014
  • 신제품/서비스를 설계함에 있어 해당 제품 혹은 서비스가 제공하여야 할 기능을 선정하는 것(feature selection)은 디자이너의 매우 어려운 의사결정 문제이지만, 기존 방법론들은 특정 제품-서비스에 대한 사용자의 니즈를 효과적으로 파악하기에는 한계점이 있다. 특히 기존의 선호도 서베이를 통한 방법은 사용자의 멘탈모델에 대한 분석에 기반하지 않기에 기능과부화(feature creep) 현상의 한 원인으로 지적되고 있다. 본 연구는 사용자에게 새로운 기능을 제공할 경우(혹은 제공된 기능을 제거해야 할 경우), 그 기능으로부터 추론되는 제품-서비스의 멘탈모델을 탐지하는 새로운 기법인 'False belief technique'을 제안하고, 이를 통해 디자이너의 기능 선정(feature selection) 의사결정에 활용될 수 있도록 하고자 한다.

The Optimal Bispectral Feature Vectors and the Fuzzy Classifier for 2D Shape Classification

  • Youngwoon Woo;Soowhan Han;Park, Choong-Shik
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.421-427
    • /
    • 2001
  • In this paper, a method for selection of the optimal feature vectors is proposed for the classification of closed 2D shapes using the bispectrum of a contour sequence. The bispectrum based on third order cumulants is applied to the contour sequences of the images to extract feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to represent two-dimensional planar images, but there is no certain criterion on the selection of the feature vectors for optimal classification of closed 2D images. In this paper, a new method for selecting the optimal bispectral feature vectors based on the variances of the feature vectors. The experimental results are presented using eight different shapes of aircraft images, the feature vectors of the bispectrum from five to fifteen and an weighted mean fuzzy classifier.

  • PDF

서명자동검정을 위한 개인별 특징 세트 선택 (Customised feature set selection for automatic signature verification)

  • 배영래;조동욱;김지영
    • 한국통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1642-1653
    • /
    • 1996
  • This paper covers feature extraction for automatic handwritten signature verification. Several major feature selection techniques are investigated from a practical perspective to realise an optimal signature verification system, and customised feature set selection based on set-on-set distance measurement is presented. The experimental results have proved the proposed methods to be efficient, offering considerably improved verification performance compared to conventional methods. Also, they dramatically reduce the processing complexity in the verification system.

  • PDF

Feature-Based Relation Classification Using Quantified Relatedness Information

  • Huang, Jin-Xia;Choi, Key-Sun;Kim, Chang-Hyun;Kim, Young-Kil
    • ETRI Journal
    • /
    • 제32권3호
    • /
    • pp.482-485
    • /
    • 2010
  • Feature selection is very important for feature-based relation classification tasks. While most of the existing works on feature selection rely on linguistic information acquired using parsers, this letter proposes new features, including probabilistic and semantic relatedness features, to manifest the relatedness between patterns and certain relation types in an explicit way. The impact of each feature set is evaluated using both a chi-square estimator and a performance evaluation. The experiments show that the impact of relatedness features is superior to existing well-known linguistic features, and the contribution of relatedness features cannot be substituted using other normally used linguistic feature sets.

기계학습 기반의 실시간 악성코드 탐지를 위한 최적 특징 선택 방법 (An Optimal Feature Selection Method to Detect Malwares in Real Time Using Machine Learning)

  • 주진걸;정인선;강승호
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.203-209
    • /
    • 2019
  • The performance of an intelligent classifier for detecting malwares added to multimedia contents based on machine learning is highly dependent on the properties of feature set. Especially, in order to determine the malicious code in real time the size of feature set should be as short as possible without reducing the accuracy. In this paper, we introduce an optimal feature selection method to satisfy both high detection rate and the minimum length of feature set against the feature set provided by PEFeatureExtractor well known as a feature extraction tool. For the evaluation of the proposed method, we perform the experiments using Windows Portable Executables 32bits.