The early detection of breast cancer is clearly a key ingredient for reducing breast cancer mortality. Microcalcification is the only visible feature of the DCIS's(ductal carcinoma in situ) which consist 15 ~ 20% of screening-detected breast cancer. Therefore, the analysis of the shapes and distributions of microcalcifications is very significant for the early detection. The automatic detection procedures have b(:on the concern of digital image processing for many years. We proposed here one efficient method which is essentially statistical pattern classification accelerated by one representative feature, correlation coefficient. We compared the results by this additional feature with results by a simple gray level thresholding. The average detection rate was increased from 48% by gray level feature only to 83% by the proposed method The performances were evaluated with TP rates and FP counts, and also with Bayes errors.
This paper presents a novel convolutional neural network based multi-feature fusion learning method for non-rigid 3D model retrieval, which can investigate the useful discriminative information of the heat kernel signature (HKS) descriptor and the wave kernel signature (WKS) descriptor. At first, we compute the 2D shape distributions of the two kinds of descriptors to represent the 3D model and use them as the input to the networks. Then we construct two convolutional neural networks for the HKS distribution and the WKS distribution separately, and use the multi-feature fusion layer to connect them. The fusion layer not only can exploit more discriminative characteristics of the two descriptors, but also can complement the correlated information between the two kinds of descriptors. Furthermore, to further improve the performance of the description ability, the cross-connected layer is built to combine the low-level features with high-level features. Extensive experiments have validated the effectiveness of the designed multi-feature fusion learning method.
Although researchers have proposed numerous techniques for speech emotion recognition, its performance remains unsatisfactory in many application scenarios. In this study, we propose a speech emotion recognition model based on a genetic algorithm (GA)-decision tree (DT) fusion of deep and acoustic features. To more comprehensively express speech emotional information, first, frame-level deep and acoustic features are extracted from a speech signal. Next, five kinds of statistic variables of these features are calculated to obtain utterance-level features. The Fisher feature selection criterion is employed to select high-performance features, removing redundant information. In the feature fusion stage, the GA is is used to adaptively search for the best feature fusion weight. Finally, using the fused feature, the proposed speech emotion recognition model based on a DT support vector machine model is realized. Experimental results on the Berlin speech emotion database and the Chinese emotion speech database indicate that the proposed model outperforms an average weight fusion method.
The Journal of Korean Association of Computer Education
/
v.11
no.4
/
pp.85-93
/
2008
This paper proposes a method for generating low-level geometric models with retaining salient features during decimation. Our method employs feature extraction technique for extracting feature lines defined via curvature derivatives on the model (we divide features into ridges and valleys). We add the extraction method to simplification technique (Feature Quadric Error Metric) for making coarse model with features. This paper clearly shows that experimental results have better quality and smaller geometric error than previous methods.
Currently most of commercial operating systems contain a high-level audit feature to increase their own security level. Linux does not fall behind the other commercial operating systems in performance and stability, but Linux does not have a good audit feature. Linux is required to support a higher security feature than C2 level of the TCSEC in order to be used as a server operating system, which requires the kernel-level audit feature that provides the system call auditing feature and audit event. In this paper, we present LxBSM, which is a kernel module to provide the kernel-level audit features. The audit record format of LxBSM is compatible with that of Sunshield BSM. The LxBSM is implemented as a loadable kernel module, so it has the enhanced usability. It provides the rich audit records including the user-level audit events such as login/logout. It supports both the pipe and file interface for increasing the connectivity between LxBSM and intrusion detection systems (IDS). The performance of LxBSM is compared and evaluated with that of Linux kernel without the audit features. The response time was increased when the system calls were called to create the audit data, such as fork, execve, open, and close. However any other performance degradation was not observed.
This study aims to provide the research for dental technician's stress prevention and management with basic materials by understanding dental technician's psychosocial stress level and examining relevant factors. The subject of this study is 255 dental technologists who work mainly in Seoul Gyeonggi district for a month of April of 2009 and I conducted cross-sectional study through self administered survey. The contents of survey include general feature, occupational feature, health behavior feature. I used Karasek's Job Content Questionnaire, JCQ and Psychosocial well-being index, PWI-SF as means of measurement. To compare the level of dental technician's psychosocial stress, I conducted t-test and ANOVA and I measured the factors that are related with psychosocial stress symptom with step by step multiple regressive analysis. According to the result of Cronbach's a value which is yielded to verify the reliability of means of measurement, the reliability of concept is sufficient. The detailed result of this study is as follows. 1. According to the result of analyzing the stress symptom in accordance with general feature and occupational feature, those dental technologists who are older and not married, graduate from junior college, have lower position, work at university hospital or general hospital show lower stress(p<0.05). There is no difference in the level of psychosocial stress with regard to duty related feature, period of service, daily average working hours, monthly average pay. 2. With regard to health behavior feature, those dental technologists who control weight better and have meal more regularly show lower stress(p<0.05). Those dental technicians who smoke, drink liquid and take a suitable sleep show low stress but the difference does not have significance statistically. 3. With regard to the factors of stress in the workplace, those dental technicians who have lower duty related requirement, have higher duty related control ability, have higher social support, have less instability of employment and have less workload and physical burden show lower stress(p<0.05). 4. According to the result of analyzing the factors that influence dental technologist's stress symptom, social support has the most enormous influence on stress symptom. Unstable employment, regular exercise, regular eating, daily average sleeping hours and technological capacity are also important in this order. According to the result of this study, those dental technicians who have higher social support, less instability of employment, do exercise more regularly, take enough sleep more soundly and have higher technological capacity show lower psychosocial stress symptom. Therefore, to adjust appropriately the dental technician's stress and properly maintain and improve the dental technician's mental health, effective management plan that enables dental technicians to maintain smooth human relationships for dental technicians should be sought. In addition, heath education and health management for dental technicians should be given more thoroughly so that they can establish desirable health behavior in daily life.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.3
/
pp.129-136
/
2020
In this paper, we propose a thermal imagery-based object detection algorithm for low-light level nighttime surveillance system. Many features selected by Haar-like feature selection algorithm and existing Adaboost algorithm are often vulnerable to noise and problems with similar or overlapping feature set for learning samples. It also removes noise from the feature set from the surveillance image of the low-light night environment, and implements it using the lightweight extended Haar feature and adaboost learning algorithm to enable fast and efficient real-time feature selection. Experiments use extended Haar feature points to recognize non-predictive objects with motion in nighttime low-light environments. The Adaboost learning algorithm with video frame 800*600 thermal image as input is implemented with CUDA 9.0 platform for simulation. As a result, the results of object detection confirmed that the success rate was about 90% or more, and the processing speed was about 30% faster than the computational results obtained through histogram equalization operations in general images.
In this study, the reliability of nonlinear ultrasonic modulation based fatigue crack detection is improved using a feature-level data fusion approach. When two ultrasonic inputs at two distinct frequencies are applied to a specimen with a fatigue crack, modulation components at the summation and difference of these two input frequencies appear. First, the spectral amplitudes of the modulation components and their spectral correlations are defined as individual features. Then, a 2D feature space is constructed by combining these two features, and the presence of a fatigue crack is identified in the feature space. The effectiveness of the proposed fatigue crack detection technique is experimentally validated through cyclic loading tests of aluminum plates, full-scale steel girders and a rotating shaft component. Subsequently, the improved reliability of the proposed technique is quantitatively investigated using receiver operating characteristic analysis. The uniqueness of this study lies in (1) improvement of nonlinear ultrasonic modulation based fatigue crack detection reliability using feature-level data fusion, (2) reference-free fatigue crack diagnosis without using the baseline data obtained from the intact condition of the structure, (3) application to full-scale steel girders and shaft component, and (4) quantitative investigation of the improved reliability using receiver operating characteristic analysis.
The Journal of Korean Institute of Electromagnetic Engineering and Science
/
v.30
no.6
/
pp.487-497
/
2019
It is very difficult to detect ballistic missiles because of small cross-sections of the radar and the high maneuverability of the missiles. In addition, it is very difficult to recognize and intercept warheads because of the existence of debris and decoy with similar motion parameters in each flight phase. Therefore, feature vectors based on the maneuver, the micro-motion according to flight phase are needed, and the two types of features must be fused for the efficient recognition of ballistic warhead regardless of the flight phase. In this paper, we introduce feature vectors appropriate for each flight phase and an effective method to fuse them at the feature vector-level and classifier-level. According to the classification simulations using the radar signals predicted by the CAD models, the closer the warhead was to the final destination, the more improved was the classification performance. This was achieved by the classifier-level fusion, regardless of the flight phase in a noisy environment.
It is well known that the performance of a fuzzy neural network strongly depends on the input features selected for its training. In its applications to sensor signal estimation, there are a large number of input variables related with an output As the number of input variables increases, the training time of fuzzy neural networks required increases exponentially. Thus, it is essential to reduce the number of inputs to a fuzzy neural network and to select the optimum number of mutually independent inputs that are able to clearly define the input-output mapping. In this work, principal component analysis (PCA), genetic algorithms (CA) and probability theory are combined to select new important input features. A proposed feature selection method is applied to the signal estimation of the steam generator water level, the hot-leg flowrate, the pressurizer water level and the pressurizer pressure sensors in pressurized water reactors and compared with other input feature selection methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.