• Title/Summary/Keyword: Feature-level

Search Result 1,273, Processing Time 0.021 seconds

Design of a Feature-based Multi-viewpoint Design Automation System

  • Lee, Kwang-Hoon;McMahon, Chris A.;Lee, Kwan-H.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.67-75
    • /
    • 2003
  • Viewpoint-dependent feature-based modelling in computer-aided design is developed for the purposes of supporting engineering design representation and automation. The approach of this paper uses a combination of a multi-level modelling approach. This has two stages of mapping between models, and the multi-level model approach is implemented in three-level architecture. Top of this level is a feature-based description for each viewpoint, comprising a combination of form features and other features such as loads and constraints for analysis. The middle level is an executable representation of the feature model. The bottom of this multi-level modelling is a evaluation of a feature-based CAD model obtained by executable feature representations defined in the middle level. The mappings involved in the system comprise firstly, mapping between the top level feature representations associated with different viewpoints, for example for the geometric simplification and addition of boundary conditions associated with moving from a design model to an analysis model, and secondly mapping between the top level and the middle level representations in which the feature model is transformed into the executable representation. Because an executable representation is used as the intermediate layer, the low level evaluation can be active. The example will be implemented with an analysis model which is evaluated and for which results are output. This multi-level modelling approach will be investigated within the framework aimed for the design automation with a feature-based model.

A Study on the Performance Enhancement of Radar Target Classification Using the Two-Level Feature Vector Fusion Method

  • Kim, In-Ha;Choi, In-Sik;Chae, Dae-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.3
    • /
    • pp.206-211
    • /
    • 2018
  • In this paper, we proposed a two-level feature vector fusion technique to improve the performance of target classification. The proposed method combines feature vectors of the early-time region and late-time region in the first-level fusion. In the second-level fusion, we combine the monostatic and bistatic features obtained in the first level. The radar cross section (RCS) of the 3D full-scale model is obtained using the electromagnetic analysis tool FEKO, and then, the feature vector of the target is extracted from it. The feature vector based on the waveform structure is used as the feature vector of the early-time region, while the resonance frequency extracted using the evolutionary programming-based CLEAN algorithm is used as the feature vector of the late-time region. The study results show that the two-level fusion method is better than the one-level fusion method.

Mid-level Feature Extraction Method Based Transfer Learning to Small-Scale Dataset of Medical Images with Visualizing Analysis

  • Lee, Dong-Ho;Li, Yan;Shin, Byeong-Seok
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1293-1308
    • /
    • 2020
  • In fine-tuning-based transfer learning, the size of the dataset may affect learning accuracy. When a dataset scale is small, fine-tuning-based transfer-learning methods use high computing costs, similar to a large-scale dataset. We propose a mid-level feature extractor that retrains only the mid-level convolutional layers, resulting in increased efficiency and reduced computing costs. This mid-level feature extractor is likely to provide an effective alternative in training a small-scale medical image dataset. The performance of the mid-level feature extractor is compared with the performance of low- and high-level feature extractors, as well as the fine-tuning method. First, the mid-level feature extractor takes a shorter time to converge than other methods do. Second, it shows good accuracy in validation loss evaluation. Third, it obtains an area under the ROC curve (AUC) of 0.87 in an untrained test dataset that is very different from the training dataset. Fourth, it extracts more clear feature maps about shape and part of the chest in the X-ray than fine-tuning method.

Road Damage Detection and Classification based on Multi-level Feature Pyramids

  • Yin, Junru;Qu, Jiantao;Huang, Wei;Chen, Qiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.786-799
    • /
    • 2021
  • Road damage detection is important for road maintenance. With the development of deep learning, more and more road damage detection methods have been proposed, such as Fast R-CNN, Faster R-CNN, Mask R-CNN and RetinaNet. However, because shallow and deep layers cannot be extracted at the same time, the existing methods do not perform well in detecting objects with fewer samples. In addition, these methods cannot obtain a highly accurate detecting bounding box. This paper presents a Multi-level Feature Pyramids method based on M2det. Because the feature layer has multi-scale and multi-level architecture, the feature layer containing more information and obvious features can be extracted. Moreover, an attention mechanism is used to improve the accuracy of local boundary boxes in the dataset. Experimental results show that the proposed method is better than the current state-of-the-art methods.

A Study on the Representation of the Dimensions in the Feature-based Modeler Based on the B-rep (경계 표현법을 기반으로 한 특징 형상 모델러에서 치수 정보의 표현에 관한 연구)

  • 변문현;오익수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.122-132
    • /
    • 1996
  • Features are generic shapes with which engineers associate certain attributes and knowledge useful in reasoning about the product. Feature-based modeling systems support additional levels of information beyond those available in geometric modelers. The objective of this study is to develop a PC level feature-based modeling system which explicitly represents dimensions of the part. The feature-based modeler retains all the benefits of traditional B-rep. solid models, and represents the dimensions at a high level of a abstraction so that dimension driven geometry can be achieved.

  • PDF

A Study on Biometric Model for Information Security (정보보안을 위한 생체 인식 모델에 관한 연구)

  • Jun-Yeong Kim;Se-Hoon Jung;Chun-Bo Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.317-326
    • /
    • 2024
  • Biometric recognition is a technology that determines whether a person is identified by extracting information on a person's biometric and behavioral characteristics with a specific device. Cyber threats such as forgery, duplication, and hacking of biometric characteristics are increasing in the field of biometrics. In response, the security system is strengthened and complex, and it is becoming difficult for individuals to use. To this end, multiple biometric models are being studied. Existing studies have suggested feature fusion methods, but comparisons between feature fusion methods are insufficient. Therefore, in this paper, we compared and evaluated the fusion method of multiple biometric models using fingerprint, face, and iris images. VGG-16, ResNet-50, EfficientNet-B1, EfficientNet-B4, EfficientNet-B7, and Inception-v3 were used for feature extraction, and the fusion methods of 'Sensor-Level', 'Feature-Level', 'Score-Level', and 'Rank-Level' were compared and evaluated for feature fusion. As a result of the comparative evaluation, the EfficientNet-B7 model showed 98.51% accuracy and high stability in the 'Feature-Level' fusion method. However, because the EfficietnNet-B7 model is large in size, model lightweight studies are needed for biocharacteristic fusion.

A Study on Multi-stage Management and Spatio-Temporal Search of Video Features for a Surveillance System (감시 시스템을 위한 동영상 데이터의 다단계 관리 및 시공간 검색 기법 연구)

  • 이희정;이원석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.12-14
    • /
    • 1999
  • 오늘날 멀티미디어 및 인터넷 서비스가 눈에 띄게 증가하면서 다양한 응용분야에서의 동영상 데이터 활용을 급증하였고 이에 사용자가 원하는 동영상 데이터를 빠르고 정확하게 검색하기 위한 내용기반 검색기법이 필수적이다. 본 논문은 high-level features와 더불어 동영상의 고유 내용 속성에 속하는 low-level features를 자동 일반화(generalization)하여 다단계 관리하고 features에 대한 가중치 적용질의를 제공함으로써 기존 내용기반 검색 연구와는 뚜렷한 차별성을 갖는다. 또한 low-level features와 high-level features간의 자동변환(translation)을 가능하게 함으로써 동영상 데이터베이스의 사용자 접근 효율을 한단계 높이고 보다 의미구조화된 동영상 관리 및 내용기반 검색을 지원한다.

  • PDF

An Active Contour Approach to Extract Feature Regions from Triangular Meshes

  • Min, Kyung-Ha;Jung, Moon-Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.575-591
    • /
    • 2011
  • We present a novel active contour-based two-pass approach to extract smooth feature regions from a triangular mesh. In the first pass, an active contour formulated in level-set surfaces is devised to extract feature regions with rough boundaries. In the second pass, the rough boundary curve is smoothed by minimizing internal energy, which is derived from its curvature. The separation of the extraction and smoothing process enables us to extract feature regions with smooth boundaries from a triangular mesh without user's initial model. Furthermore, smooth feature curves can also be obtained by skeletonizing the smooth feature regions. We tested our algorithm on facial models and proved its excellence.

A Study on Feature-Based Multi-Resolution Modelling - Part II: System Implementation and Criteria for Level of Detail (특징형상기반 다중해상도 모델링에 관한 연구 - Part II: 시스템 구현 및 상세수준 판단기준)

  • Lee K.Y.;Lee S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.444-454
    • /
    • 2005
  • Recently, the requirements of multi-resolution models of a solid model, which represent an object at multiple levels of feature detail, are increasing for engineering tasks such as analysis, network-based collaborative design, and virtual prototyping and manufacturing. The research on this area has focused on several topics: topological frameworks for representing multi-resolution solid models, criteria for the level of detail (LOD), and generation of valid models after rearrangement of features. As a solution to the feature rearrangement problem, the new concept of the effective zone of a feature is introduced in the former part of the paper. In this paper, we propose a feature-based non-manifold modeling system to provide multi-resolution models of a feature-based solid or non-manifold model on the basis of the effective feature zones. To facilitate the implementation, we introduce the class of the multi-resolution feature whose attributes contain all necessary information to build a multi-resolution solid model and extract LOD models from it. In addition, two methods are introduced to accelerate the extraction of LOD models from the multi-resolution modeling database: the one is using an NMT model, known as a merged set, to represent multi-resolution models, and the other is storing differences between adjacent LOD models to accelerate the transition to the other LOD. We also suggest the volume of the feature, regardless of feature type, as a criterion for the LOD. This criterion can be used in a wide range of applications, since there is no distinction between additive and subtractive features unlike the previous method.

A Database Creation and Retrival Method of Feature Descriptors for Markerless Tracking (마커리스 트래킹을 위한 특징 서술자의 데이터베이스 생성 및 검색방법)

  • Yun, Yo-Seop;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.11 no.3
    • /
    • pp.63-72
    • /
    • 2011
  • In this paper, we propose a novel database creation and retrieval method of feature descriptors to support real-time marker-less tracking in the augmented reality environments. Each feature descriptor is encoded by integer and multi-level database is created in order to retrieve a feature descriptor efficiently. The retrieval of a feature descriptor is performed as follows: Firstly, candidate feature descriptors are searched by traversing the multi-level database. Secondly, the euclidean distance between input feature descriptor and each candidate one is compared. The shortest one is retrieved. The proposed method is 16 ms faster than previous KD-Tree method for each feature descriptor.