• Title/Summary/Keyword: Feature vectors

Search Result 814, Processing Time 0.023 seconds

A Study on the Recognition of Korean Numerals Using Recurrent Neural Predictive HMM (회귀신경망 예측 HMM을 이용한 숫자음 인식에 관한 연구)

  • 김수훈;고시영;허강인
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.8
    • /
    • pp.12-18
    • /
    • 2001
  • In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.

  • PDF

A Study on Face Recognition using Neural Networks and Characteristics Extraction based on Differential Image and DCT (차영상과 DCT 기반 특징 추출과 신경망을 이용한 얼굴 인식에 관한 연구)

  • 임춘환;고낙용;박종안
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1549-1557
    • /
    • 1999
  • In this paper, we propose a face recognition algorithm based on the differential image method-DCT This algorithm uses neural networks which is flexible for noise. Using the same condition (same luminous intensity and same distance from the fixed CCD camera to human face), we have captured two images. One doesn't contain human face. The other contains human face. Differential image method is used to separate the second image into face region and background region. After that, we have extracted square area from the face region, which is based on the edge distribution. This square region is used as the characteristics region of human face. It contains the eye bows, the eyes, the nose, and the mouth. After executing DCT for this square region, we have extracted the feature vectors. The feature vectors were normalized and used as the input vectors of the neural network. Simulation results show 100% recognition rate when face images were learned and 92.25% recognition rate when face images weren't learned for 30 persons.

  • PDF

A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm (효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.359-368
    • /
    • 2002
  • In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.

AdaBoost-based Gesture Recognition Using Time Interval Window Applied Global and Local Feature Vectors with Mono Camera (모노 카메라 영상기반 시간 간격 윈도우를 이용한 광역 및 지역 특징 벡터 적용 AdaBoost기반 제스처 인식)

  • Hwang, Seung-Jun;Ko, Ha-Yoon;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.471-479
    • /
    • 2018
  • Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.

Content-Based Retrieval using MPEG-7 Visual Descriptor and Hippocampal Neural Network (MPEG-7 시각 기술자와 해마 신경망을 이용한 내용기반 검색)

  • Kim Young Ho;Kang Dae-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1083-1087
    • /
    • 2005
  • As development of digital technology, many kinds of multimedia data are used variously and requirements for effective use by user are increasing. In order to transfer information fast and precisely what user wants, effective retrieval method is required. As existing multimedia data are impossible to apply the MPEG-1, MPEG-2 and MPEG-4 technologies which are aimed at compression, store and transmission. So MPEG-7 is introduced as a new technology for effective management and retrieval of multimedia data. In this paper, we extract content-based features using color descriptor among the MPEG-7 standardization visual descriptor, and reduce feature data applying PCA(Principal Components Analysis) technique. We model the cerebral cortex and hippocampal neural network in engineering domain, and team content-based feature vectors fast and apply the hippocampal neural network algorithm to compose of optimized feature. And then we present fast and precise retrieval effect when indexing and retrieving.

A Comparison of Effective Feature Vectors for Speech Emotion Recognition (음성신호기반의 감정인식의 특징 벡터 비교)

  • Shin, Bo-Ra;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1364-1369
    • /
    • 2018
  • Speech emotion recognition, which aims to classify speaker's emotional states through speech signals, is one of the essential tasks for making Human-machine interaction (HMI) more natural and realistic. Voice expressions are one of the main information channels in interpersonal communication. However, existing speech emotion recognition technology has not achieved satisfactory performances, probably because of the lack of effective emotion-related features. This paper provides a survey on various features used for speech emotional recognition and discusses which features or which combinations of the features are valuable and meaningful for the emotional recognition classification. The main aim of this paper is to discuss and compare various approaches used for feature extraction and to propose a basis for extracting useful features in order to improve SER performance.

Feature Subset for Improving Accuracy of Keystroke Dynamics on Mobile Environment

  • Lee, Sung-Hoon;Roh, Jong-hyuk;Kim, SooHyung;Jin, Seung-Hun
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.523-538
    • /
    • 2018
  • Keystroke dynamics user authentication is a behavior-based authentication method which analyzes patterns in how a user enters passwords and PINs to authenticate the user. Even if a password or PIN is revealed to another user, it analyzes the input pattern to authenticate the user; hence, it can compensate for the drawbacks of knowledge-based (what you know) authentication. However, users' input patterns are not always fixed, and each user's touch method is different. Therefore, there are limitations to extracting the same features for all users to create a user's pattern and perform authentication. In this study, we perform experiments to examine the changes in user authentication performance when using feature vectors customized for each user versus using all features. User customized features show a mean improvement of over 6% in error equal rate, as compared to when all features are used.

Recognition of Driving Patterns Using Accelerometers (가속도센서를 이용한 운전패턴 인식기법)

  • Hhu, Gun-Sup;Bae, Ki-Man;Lee, Sang-Ryoung;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.517-523
    • /
    • 2010
  • In this paper, we proposed an algorithm to detect aggressive driving status by analysing six kinds of driving patterns, which was achieved by comparing for the feature vectors using mahalanobis distance. The first step is to construct feature matrix of $6{\times}2$ size using frequency response of the time-series accelerometer data. Singular value decomposition makes it possible to find the dominant eigenvalue and its corresponding eigenvector. We use the eigenvector as the feature vector of the driving pattern. We conducted real experiments using three drivers to see the effects of recognition. Although there exists differences from individual drivers, we showed that driving patterns can be recognized with about 80% accuracy. Further research topics will include the development of aggressive driving warning system by improving the proposed technique and combining with post-processing of accelerometer signals.

The Comparison of Speech Feature Parameters for Emotion Recognition (감정 인식을 위한 음성의 특징 파라메터 비교)

  • 김원구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.470-473
    • /
    • 2004
  • In this paper, the comparison of speech feature parameters for emotion recognition is studied for emotion recognition using speech signal. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy. MFCC parameters and their derivatives with or without cepstral mean subfraction are also used to evaluate the performance of the conventional pattern matching algorithms. Pitch and energy Parameters were used as a Prosodic information and MFCC Parameters were used as phonetic information. In this paper, In the Experiments, the vector quantization based emotion recognition system is used for speaker and context independent emotion recognition. Experimental results showed that vector quantization based emotion recognizer using MFCC parameters showed better performance than that using the Pitch and energy parameters. The vector quantization based emotion recognizer achieved recognition rates of 73.3% for the speaker and context independent classification.

  • PDF

Self Organizing Feature Map Type Neural Computation Algorithm for Travelling Salesman Problem (SOFM(Self-Organizing Feature Map)형식의 Travelling Salesman 문제 해석 알고리즘)

  • Seok, Jin-Wuk;Cho, Seong-Won;Choi, Gyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.983-985
    • /
    • 1995
  • In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.

  • PDF