In this paper, we propose the Recurrent Neural Predictive HMM (RNPHMM). The RNPHMM is the hybrid network of the recurrent neural network and HMM. The predictive recurrent neural network trained to predict the future vector based on several last feature vectors, and defined every state of HMM. This method uses the prediction value from the predictive recurrent neural network, which is dynamically changing due to the effects of the previous feature vectors instead of the stable average vectors. The models of the RNPHMM are Elman network prediction HMM and Jordan network prediction HMM. In the experiment, we compared the recognition abilities of the RNPHMM as we increased the state number, prediction order, and number of hidden nodes for the isolated digits. As a result of the experiments, Elman network prediction HMM and Jordan network prediction HMM have good recognition ability as 98.5% for test data, respectively.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.8B
/
pp.1549-1557
/
1999
In this paper, we propose a face recognition algorithm based on the differential image method-DCT This algorithm uses neural networks which is flexible for noise. Using the same condition (same luminous intensity and same distance from the fixed CCD camera to human face), we have captured two images. One doesn't contain human face. The other contains human face. Differential image method is used to separate the second image into face region and background region. After that, we have extracted square area from the face region, which is based on the edge distribution. This square region is used as the characteristics region of human face. It contains the eye bows, the eyes, the nose, and the mouth. After executing DCT for this square region, we have extracted the feature vectors. The feature vectors were normalized and used as the input vectors of the neural network. Simulation results show 100% recognition rate when face images were learned and 92.25% recognition rate when face images weren't learned for 30 persons.
In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.3
/
pp.471-479
/
2018
Recently, the spread of smart TV based Android iOS Set Top box has become common. This paper propose a new approach to control the TV using gestures away from the era of controlling the TV using remote control. In this paper, the AdaBoost algorithm is applied to gesture recognition by using a mono camera. First, we use Camshift-based Body tracking and estimation algorithm based on Gaussian background removal for body coordinate extraction. Using global and local feature vectors, we recognized gestures with speed change. By tracking the time interval trajectories of hand and wrist, the AdaBoost algorithm with CART algorithm is used to train and classify gestures. The principal component feature vector with high classification success rate is searched using CART algorithm. As a result, 24 optimal feature vectors were found, which showed lower error rate (3.73%) and higher accuracy rate (95.17%) than the existing algorithm.
Journal of Institute of Control, Robotics and Systems
/
v.11
no.12
/
pp.1083-1087
/
2005
As development of digital technology, many kinds of multimedia data are used variously and requirements for effective use by user are increasing. In order to transfer information fast and precisely what user wants, effective retrieval method is required. As existing multimedia data are impossible to apply the MPEG-1, MPEG-2 and MPEG-4 technologies which are aimed at compression, store and transmission. So MPEG-7 is introduced as a new technology for effective management and retrieval of multimedia data. In this paper, we extract content-based features using color descriptor among the MPEG-7 standardization visual descriptor, and reduce feature data applying PCA(Principal Components Analysis) technique. We model the cerebral cortex and hippocampal neural network in engineering domain, and team content-based feature vectors fast and apply the hippocampal neural network algorithm to compose of optimized feature. And then we present fast and precise retrieval effect when indexing and retrieving.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.10
/
pp.1364-1369
/
2018
Speech emotion recognition, which aims to classify speaker's emotional states through speech signals, is one of the essential tasks for making Human-machine interaction (HMI) more natural and realistic. Voice expressions are one of the main information channels in interpersonal communication. However, existing speech emotion recognition technology has not achieved satisfactory performances, probably because of the lack of effective emotion-related features. This paper provides a survey on various features used for speech emotional recognition and discusses which features or which combinations of the features are valuable and meaningful for the emotional recognition classification. The main aim of this paper is to discuss and compare various approaches used for feature extraction and to propose a basis for extracting useful features in order to improve SER performance.
Keystroke dynamics user authentication is a behavior-based authentication method which analyzes patterns in how a user enters passwords and PINs to authenticate the user. Even if a password or PIN is revealed to another user, it analyzes the input pattern to authenticate the user; hence, it can compensate for the drawbacks of knowledge-based (what you know) authentication. However, users' input patterns are not always fixed, and each user's touch method is different. Therefore, there are limitations to extracting the same features for all users to create a user's pattern and perform authentication. In this study, we perform experiments to examine the changes in user authentication performance when using feature vectors customized for each user versus using all features. User customized features show a mean improvement of over 6% in error equal rate, as compared to when all features are used.
Journal of Institute of Control, Robotics and Systems
/
v.16
no.6
/
pp.517-523
/
2010
In this paper, we proposed an algorithm to detect aggressive driving status by analysing six kinds of driving patterns, which was achieved by comparing for the feature vectors using mahalanobis distance. The first step is to construct feature matrix of $6{\times}2$ size using frequency response of the time-series accelerometer data. Singular value decomposition makes it possible to find the dominant eigenvalue and its corresponding eigenvector. We use the eigenvector as the feature vector of the driving pattern. We conducted real experiments using three drivers to see the effects of recognition. Although there exists differences from individual drivers, we showed that driving patterns can be recognized with about 80% accuracy. Further research topics will include the development of aggressive driving warning system by improving the proposed technique and combining with post-processing of accelerometer signals.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.470-473
/
2004
In this paper, the comparison of speech feature parameters for emotion recognition is studied for emotion recognition using speech signal. For this purpose, a corpus of emotional speech data recorded and classified according to the emotion using the subjective evaluation were used to make statical feature vectors such as average, standard deviation and maximum value of pitch and energy. MFCC parameters and their derivatives with or without cepstral mean subfraction are also used to evaluate the performance of the conventional pattern matching algorithms. Pitch and energy Parameters were used as a Prosodic information and MFCC Parameters were used as phonetic information. In this paper, In the Experiments, the vector quantization based emotion recognition system is used for speaker and context independent emotion recognition. Experimental results showed that vector quantization based emotion recognizer using MFCC parameters showed better performance than that using the Pitch and energy parameters. The vector quantization based emotion recognizer achieved recognition rates of 73.3% for the speaker and context independent classification.
In this paper, we propose a Self Organizing Feature Map (SOFM) Type Neural Computation Algorithm for the Travelling Salesman Problem(TSP). The actual best solution to the TSP problem is computatinally very hard. The reason is that it has many local minim points. Until now, in neural computation field, Hopield-Tank type algorithm is widely used for the TSP. SOFM and Elastic Net algorithm are other attempts for the TSP. In order to apply SOFM type neural computation algorithms to the TSP, the object function forms a euclidean norm between two vectors. We propose a Largrangian for the above request, and induce a learning equation. Experimental results represent that feasible solutions would be taken with the proposed algorithm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.