
 

www.kips.or.kr Copyright© 2018 KIPS

Feature Subset for Improving Accuracy of Keystroke 
Dynamics on Mobile Environment 

Sung-Hoon Lee*, Jong-hyuk Roh**, SooHyung Kim**, and Seung-Hun Jin** 

Abstract
Keystroke dynamics user authentication is a behavior-based authentication method which analyzes patterns 
in how a user enters passwords and PINs to authenticate the user. Even if a password or PIN is revealed to 
another user, it analyzes the input pattern to authenticate the user; hence, it can compensate for the 
drawbacks of knowledge-based (what you know) authentication. However, users' input patterns are not 
always fixed, and each user's touch method is different. Therefore, there are limitations to extracting the same 
features for all users to create a user's pattern and perform authentication. In this study, we perform 
experiments to examine the changes in user authentication performance when using feature vectors 
customized for each user versus using all features. User customized features show a mean improvement of 
over 6% in error equal rate, as compared to when all features are used. 
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1. Introduction

Keystroke Dynamics Authentication (KDA) is a behavior-based user authentication technology. 
Behavior-based user authentication has several advantages. It can overcome the limitations of existing 
widely-used knowledge-based authentication methods such as passwords and PINs, in which 
authentication can occur when a password has been exposed. Even if an attacker enters the same 
password or PIN, the attacker does not know a genuine user's input pattern; thus, comparing input 
patterns can strengthen the security of knowledge-based user authentication. 

KDA began in the 1980s computer environment with research into analyzing the input patterns of 
users entering passwords on a keyboard to perform user authentication, and extensive research has 
been performed since then [1]. For conventional mobile phones, KDA was firstly applied in 2006 [2]. 
Since 2010, as smartphones have become widespread, there have been efforts toward applying KDA to 
the smartphone environment [3]. Smartphones are generally equipped with several sensors such as 
accelerometers, gyroscopes, and touch screens. Thus, more information can be used for analyzing user
input patterns. 
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One of the conventional of KDA is a time-based feature, which uses the time of events where a user 
presses and releases a key (key-down, key-up) [4]. In addition, time-based features are frequently used 
in the smartphone environment. In addition to these features, KDA in smartphones employs sensor-
based features [5,6] that use the various sensors installed in smartphones (accelerometer, gyroscope, 
touch screen [5]. It can use sensors to analyze several aspects of a user's input pattern, including how 
the phone shakes when a key is pressed, touch location, and touch size. As various services use 
smartphones, several short PINs are being used for user authentication to protect the data saved in 
smartphones. Hence, active research is being performed on PIN-based KDA for the smartphone 
environment. 

Most studies [7] use the following steps in research and experimentation for improving KDA 
performance as shown Fig. 1. 

1. Collect data from several users using the same predetermined PIN 
2. Extract time-based and sensor-based features from the collected data 
3. Perform training assuming one user is the genuine user, and perform classification experiments 

assuming the other users are attackers 
4. To obtain best EER, perform research (e.g., find customized parameter set of the classifier or 

transform the classification algorithm) to improve classification performance based on the 
experiment results 

All extracted features are used, and part of the genuine user's collected data is used as training data, 
while the rest is used as the genuine user's test data. At this time, other users' data are used as test data. 
A training model is created from the genuine user's training data, and this model is compared to all 
features extracted from newly entered data to determine whether it is the genuine users or not. This 
procedure has the following limitations: 

1) If all users input the predefined same PIN and a user is not familiar with the PIN, a natural input 
pattern is not created within short period, e.g., 5 times or 10 times in a session. Several works performed 
an experiment with short period dataset [8]. In a situation the user is not familiar with the same PIN, it 
is too short to adjust the PIN.  

 2) Classification is improved because users enter the PIN using their input patterns, regardless of the 
genuine user’s input pattern; hence, the input pattern of each user is different. 

 3) Existing studies do not consider that classification performance reduces when all feature types are 
used instead of feature types with good discrimination of input patterns. 

In this study, we perform experiments that confirm that higher classification performance can be 
achieved when collecting data from PINs that users are familiar—when collecting data from PINs that 
users are not familiar with, users need a time to naturally input the PINs. Users input the PINs not 
naturally at early session (input 5 times per session)—with and using feature types with high 
discrimination of users, as compared to when this is not the case. The contributions of our study are as 
following: 

• We collect data set that imposters mimic a genuine users’ input pattern. 
• We confirm that each user has own input pattern even imposters try to mimic the genuine 

users’ input pattern. 
• We confirm that each user has own discriminate feature subset and classification performance is 

increased when using each users’ feature subset. 
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Fig. 1. Extracting time-based features from a time event. 

 

When data were collected in previous research, all users were asked to input the same PIN, whereas 
we allowed each user to use a familiar PIN (6 digits of the user’s phone number remaining after 
removing the telecom ID number). In addition, after other users observed the genuine user entering 
his/her PIN (a peeking over the shoulder attack scenario), we asked them to imitate the genuine user's 
PIN input pattern. In this manner, we could confirm whether KDA can distinguish between the 
genuine user and the attacker even when the attacker imitates the genuine user's input pattern. 

Additionally, we confirmed this through experiments on feature type vectors with high 
discrimination which can better express each user's input patterns by distinguishing feature vectors by 
the data types (time, accelerometer, linear accelerometer, gyroscope, uncalibrated gyroscope) obtained 
from all feature extracted from the data. 

Additionally, we also confirmed that classification performance is increased when using a feature type 
(time, accelerometer, linear accelerometer, gyroscope, uncalibrated gyroscope) that represents the user’s 
input pattern versus using all feature types. 

The structure of the rest of the paper is as follows: in Section 2, we describe and compare previous 
research, and in Section 3, we describe the experimental procedure. In Section 4, we analyze 
experiments and their results, and finally, we provide the conclusions in Section 5. 

 
 

2. Related Works 

Research in KDA for smartphones has been actively pursued since 2013 [7]. Time-based extraction is 
the conventional method of extracting features from keystroke dynamics. The moment at which a key is 
pressed is referred to as key down (KD, D), and the moment at which it is released is referred to as Key 
Up (KU, U). When a user enters their PIN, KD and KU times are saved, and DD, DU, UD, and DD 
features are extracted, as shown in Fig. 2 and Table 1. Sensor-based features use the maximum, 
minimum, and average values of sensor changes within a certain time period (for example, the DU time 
period) as features [5]. 

 

 
Fig. 2. Extracting time-based features from a time event. 
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Table 1. Time-based features 
Feature Description 

DU 
 

Refers to the time between the pressing and release of a key; shows how long the user pressed a 
single key. Also referred to as dwell time [5]. 

UD 
 

Refers to the time between the released of one key is and the pressing of the next key. Also referred 
to as flight time [5]. 

DD Refers to the time between the pressing of one key and the next key. 

UU Refers to the time between the release of one key and the next key. 

 
Table 2. Research study on keystroke dynamics in the smartphone environment 

Study 
Input 
string 

Feature Normalization
Feature 

selection
Classifier 

EER 
(%) 

Saevanee et al. [9] 10-D F, D, P - X Neural network 1 
Zheng et al. [10] 4, 8-D A, F, D, P, S O X Distance-based 3.65 
Giuffrida et al. [5] 8-9 C A, G, F, D - X OCSVM, kNN 0.08 
Teh et al. [11] 4, 16-D F, D, P, S - X Statistical-based 5.49 

Pisani and Larena [12] 10 C F O X Immune algorithm 13 

Ho [6] 4-D A, F, D, S - X Distance-based 15 

C=character, D=digit, A=accelerometer-based feature, G=gyroscope-based feature, F=flight feature, D=dwell 
feature, P=pressure feature; S=size feature. 

 
Table 2 summarizes the research on keystroke dynamics for smartphones. In a previous study [7], 4-

digit PINs and 8-digit PINs were collected from 80 users, which was equivalent to 11,062 data points. 
Dwell (DU) and flight (UD) were used as time features, the x, y, and z axes were obtained from an 
accelerometer, and a Euclidean norm was used to extract features.  

The time features and sensor features were combined and an error equal rate (EER) of 3.5% was 
obtained. In another study [5], 8-character (internet) and 9-character alphabet strings were used as 
passwords. Eleven categories of features (RMS, RMSE, Min, Max, AvgDeltas, NumMax, NumMin, TTP, 
TTC, RCR, SMA) were extracted from x, y, z axes of an accelerometer and gyroscope sensors during the 
dwell period. Data were collected from 40 users and experiments were performed, resulting in a 
performance with an EER of 0.5%. 

Four-digit PIN and 16-digit PIN data were collected from 150 people and touch size and touch 
pressure were used as features [11]. Dwell and flight were also used as time feature. As PIN length 
increased from 4 to 16, the EER decreased from 8.55% to 5.49%, which was the performance 
improvement of approximately 35.39%. Performance differed slightly depending on PIN length; 
however, user convenience decreased because the users had to enter more PIN digits.  

 
 

3. Experimental Process 

3.1 Data Acquisition Scenario 
 

There are several scenarios where a PIN can be exposed. There are cases where the server where the 
PIN number is stored is captured through hacking by a malicious attacker (hacker), and where the PIN 
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number is revealed to a malicious attacker as it is entered by a genuine user through a peeking over the 
shoulder attack. In addition, there are the following three cases where a malicious attacker can attempt 
authentication with an exposed PIN: 

1. When authentication is attempted on the attacker’s phone with a stolen PIN. 
2. When authentication is attempted on the attacker’s phone with a PIN stolen through an over 

the shoulder attack. 
3. When authentication is attempted on the genuine user’s stolen phone with a PIN through an 

over the shoulder attack.  

This study aims to confirm whether the input pattern of a genuine user can be distinguished from 
that of an imposter on the genuine user’s phone when a PIN is exposed to a malicious attacker through 
a peeking over the shoulder attack and the malicious attacker attempts authentication by entering the 
PIN on the genuine user’s phone. When the genuine user enters the PIN, imposters watch the genuine 
user, and they can view the user's PIN and input pattern. 

The PINs were 6 digits from each user's personal mobile phone numbers. In Korea, mobile phone 
(cellular phone) numbers use 3 digits for each telecom's unique number and 8 digits for an individual's 
unique number. We used the first 6 digits of the 8 unique digits. We asked the users to input a number 
familiar to them so that we could represent the user's input pattern in detail. We conducted data 
collection with each user’s 6 digits of the 8 individual’s phone number by consent of users. We 
described the reason why used the 6 digits and the 6 users approved. 

 
3.2 Data Collection 
 

Data collection was performed with 6 users and Samsung Galaxy S6 phone. The training data used to 
create the users' keystroke dynamics patterns were collected by entering the PIN 10 times each on two 
isolated sessions, for a total of 20 samples as the training data of each user. After collected the training 
data, one of the 6 users input the PIN 5 times and other 5 users watched the one user’s input pattern as 
a genuine user entered the test data 5 times. And then, test data of the 5 users, assuming impostor, were 
collected. The collected data is shown as Fig. 3. 

 

 

Fig. 3. Data collection size of training data and test data for each user. 
 
The data collected from the smartphones consisted of time data, sensor data, and touch data. Time 

data were recorded when the PIN digits were pressed and released using the JAVA API System and 
nanotime method. Sensor data were collected from the following 4 sensors: accelerometer (Acc), linear 
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acceleration (Lacc), gyroscope (Gyr), and uncalibrated gyroscope (Ugyr). The details of each sensor is 
summarized in Table 3.  As shown in Fig. 2, all sensor change values were stored for the X, Y, and Z 
axes during the time period starting from when the first PIN digit was pressed until the last PIN digit 
was released. When the sensor change data was saved, the time of the changes was saved. These saved 
times were used to extract sensor features within specific time periods. 

 
Table 3. Description of sensors [13] 

Sensor Description 

Accelerometer 
 

Measures the acceleration applied to the device and is always influenced by the force 
of gravity. 

Linear acceleration Measures the acceleration applied to the device without the force of gravity. 

Gyroscope 
 

Measures the rate of rotation around the devices’ local X, Y and Z axis with drift 
compensation.  

Uncalibrated gyroscope 
 

Measures the rate of rotation around the devices’ local X, Y and Z axis without drift 
compensation. Also provides estimated drift around X, Y and Z axis.  

 

The rate of data gathering can be adjusted by setting parameter values for the method used to collect 
sensor data. Android API provides preset parameter settings (FASTEST, GAME, UI, NORMAL). The 
FASTEST setting returns sensor changes in the fastest time possible, providing the highest rate. The UI 
setting returns sensor changes as suitable for a user interface, providing the lowest rate [13]. The 
FASTEST setting can collect sensor change values in the most detail; however, it does not always return 
sensor values at fixed intervals. After collecting and checking actual data, it was confirmed that error 
was present. This is because the method for providing rate is based on average rate rather than an 
always fixed rate. The data collected when sensor values changed were saved at an average of every 
4900000 ns (every 0.004 seconds) at FASTEST setting. The FASTEST setting is used to collect sensor 
values for our study. 

 

3.3 Feature Extraction 
 

Features were extracted from the data collected from a smartphone to create user patterns. For time-
based features, the times when a user pressed (KD) and released (KU) each digit were used to extract 
DU, UD, DD, UU features as shown in Fig. 4. For sensor-based features, the average, minimum, and 
maximum values of the sensor changes during the DU period were extracted as features [5]. When 
recording sensor data, sensor change values were recorded with the time of the values. Time 
information recorded along with sensor change values is used when extracting features for the sensor 
change values that occur during a certain period (DU period) as shown in Fig. 4. The time events saved 
when the accelerometer changes values do not match the DU time precisely; however, there are 
methods to extract sensor features for each key within the DU time period nanosecond on average and 
create input patterns. In addition, there are methods for creating input patterns using the maximum, 
minimum, and average values for all PIN periods as features. 
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Fig. 4. Data collection and feature extraction of accelerometer. 

 

3.4 Feature Normalization 
 

Extracted features have different ranges. The range of time feature values is considerably larger than 
that of sensor feature values. Thus, sensor features, which have a small range, have almost no effect on 
classification. Because of this, feature values must be normalized so that they are within the same range. 
This is referred to as normalization or scaling. Frequently used normalization methods include min-
max scaling, which uses minimum and maximum values, and Z-score which uses means and 
distributions [14]. 

 	 	 	 	                                                               (1) 

 	 	 					                                                                  (2) 

 

  
Fig. 5. Feature normalization from raw data features. 
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Using the min-max formula (1) for normalization creates a range from 0 to 1. Using the Z-score 
formula (2) for normalization creates a range that varies depending on features. Normalization is 
calculated according to the same feature type. For example, as shown in Fig. 5, the actual time features 
and sensor features go through the normalization process and are converted into feature values with the 
same range. In the data set which we collected, min-max scaling showed a better performance than Z-
score with an average EER of 2 to 3%. Thus, min-max scaling was used in the experiments in this study. 

 
3.5 Classification 
 

A process is required for using the features extracted from raw data to train a user's pattern and create 
a classification model, which is compared to newly entered data to determine whether the user is 
genuine or not. Only the genuine user's data are required for training, and the classification results 
produce true or false. And impostor’s data is not collected in KDA of real world.  Hence, a One-Class 
Classifier (OCC) is required. In this study, a one-class SVM (OCSVM) was used to distinguish users. 
An OCSVM is a modification of the SVM classifier, in which only one person's data are used for training 
and the classification boundaries of training data are formed as maximum margins so that users are 
distinguished by whether or not newly entered data are included within that boundary line [15]. 

The open source scikit-learn program was used for OCSVM training and classification [16]. In 
classification using the OCSVM, the extent to which a boundary line (the curve that determines 
classification) is created along a margin determines whether or not it is a flexible classifier. This affects 
classification performance. Default parameter setting values were used (kernel: rbf, nu: 0.5, degree: 3, 
gamma: ‘auto’). 

In addition, a threshold value is an important factor that affects classification performance. Methods 
for setting the threshold value are divided into methods that set the value as calculated by a 
predetermined algorithm and heuristic methods [17] that set the optimal value determined through 
experimentation. In this study, we used a heuristic method for finding the optimal threshold values for 
our experiments. 
 

 
Fig. 6. The relationship between the FAR, FRR, and EER. 

 

3.6 Equal Error Rate 
 

EER (Equal Error Rate) is the index used for performance evaluation of behavior based 
authentication. EER is calculated through FAR (False Acceptance Rate) and FRR (False Reject Rate).  
FAR means the ratio of impostor user data to genuine user’s data, while FRR means the ratio of genuine 
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user’s data to impostor user’s data. The FAR and the FRR are correlated with each other, and the point 
at which the two indicators are equal is referred the EER as shown in Fig. 6. 

 
 

4. Results 

Table 4 shows the results of the OCSVM experiment, in which the time features and sensor features 
for each user were combined to create a user pattern and perform classification. The mean EER is 
13.05%. When the user pattern is created according to each feature type, we observe performance with 
an EER of 0% to 11.67% and a mean EER of 5.27%. In the feature type with the highest EER, all false 
reject rates (FRRs) are 0%. This implies that genuine users' experiment data are classified as being the 
genuine user. 

 
Table 4. OCSVM classification results (unit: %, highlighted parts: feature vectors with a low EER for user) 

 
Time Acc Lacc Gyr Ugyr All 

EER FRR FAR EER FRR FAR EER FRR FAR EER FRR FAR EER FRR FAR EER FRR FAR 

User1 11.67 20 3.33 6.67 0 13.33 6.67 0 13.33 18.33 0 36.67 21.67 0 43.33 3.33 0 6.67 

User2 0 0 0 31.67 0 63.33 41.67 0 83.33 33.33 0 66.67 15 0 30 30 0 60 

User3 25 0 50 11.67 20 3.33 40 0 80 10 0 20 16.67 0 33.33 10 0 20 

User4 21.67 0 43.33 25 0 50 33.33 20 46.67 25 0 50 11.67 0 23.33 21.67 0 43.33 

User5 26.67 20 33.33 26.67 0 53.33 13.33 0 26.67 3.33 0 6.67 3.33 0 6.67 13.33 20 6.67 

User6 13.45 20 6.9 0 0 0 41.03 20 62.07 13.79 0 27.59 0 0 0 0 0 0 

Avg. 16.41 10 22.81 16.94 3.33 30.55 29.33 6.66 52.01 17.29 0 34.6 11.39 0 22.77 0 3.33 22.77 

 
Good performance is obtained for more than one feature type per user. Even when users who were 

assumed to be attackers watched and imitated the genuine user's input pattern, the imitation was 
difficult. In the case of user 2 and user 6, an EER of 0% is obtained for Time, Acc, and Ugyr feature 
types, while in the case of user 5, an EER of 3.33% is obtained for the Gyr and Ugyr feature types. The 
FAR for user 2 is relatively high. In this case, an imposter is classified as a genuine user for feature types 
other than Time; hence, the EER is high. Impostors entered PIN of user 2 as the input pattern of user 2 
but did not mimic the input pattern in time. However, it seems to have imitated the similarity in sensor. 

For all users except user 1, training with single feature types provides the same or better performance 
compared to training with all feature types. depending on the PIN or the user's input style, there are 
feature types that better express a user's input pattern, which distinguishes him/her from other users. 

 
4.1. Features for a Certain Period vs. Features for total Period 
 

Sensor features can be extracted for certain periods to make the user input pattern slightly more 
detailed, or features can be extracted for total period of the PIN input to create the user input pattern. 
We observed the data to examine the difference between using a total period and a certain period. 

In the case of certain periods, the average, minimum, and maximum of the sensor change values for 
the x, y, and z axes were extracted during the DU period of PIN for 54 features (the average, minimum, 
and maximum features per each axis on 6 DU periods). In the case of total periods, features were 
extracted based on the sensor changes during the period of PIN input for 9 features (the average, 
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minimum, and maximum features per each axis on a total period). The results obtained for each feature 
type are shown in the Table 5. In the case of sensor feature types based on the accelerometer, the mean 
EER for the classification results of the features extracted during the DU period is 2.5% better than that 
for the case of total period because more features are used in the DU period than in the total period. 
There is no significant difference between the features extracted during the DU period and those 
extracted during total period. In the case of the linear accelerometer, the EER for the case of the DU 
period is 9.8% lower than that for the case of the total period. The difference between the mean EERs 
for user LSH and CMR is more than 20%. In the case of the gyroscope, the performance for the total 
period is better than that for the DU period for a few users. However, on average, the performance for 
the DU period performance improves by 6.64% compared to that for the total period. Compared to 
other sensors, the uncalibrated gyroscope exhibits the largest performance difference, with results 
showing that the EER for the case of the DU period decreases by 16.41% compared to that for the case 
of total period. For all users, an overall improvement in performance in the DU period is observed 
compared to all periods. As a result, rather than extracting sensor features from all periods to create and 
compare user input patterns, extracting sensor features from the DU periods for each key and using 
more features to create input patterns provides better unique input patterns for users and better 
classification performance. 

 
Table 5. Classification performance (EER) on DU time period vs. total time period 

 
Acc Lacc Gyr Ugyr 

DU Total DU Total DU Total DU Total 

User1 6.67 6.67 6.67 30 18.33 18.33 21.67 36.67 

User2 31.67 28.33 41.67 40 33.33 35 15 30 

User3 11.67 13.33 40 41.67 10 31.67 16.67 35 

User4 25 26.67 33.33 45 25 50 11.67 41.67 

User5 26.67 30 13.33 33.33 3.33 0 3.33 18.33 

User6 0 0 41.03 44.83 13.79 8.62 0 5.17 

Avg. 16.94 17.5 29.33 39.13 17.29 23.93 11.39 27.8 

 

4.2. Training Data and Performance According to Change 
 

In classification that uses machine learning, if there are more training data, more genuine user 
patterns can be analyzed and better performance can be obtained. We reduced the number of training 
data and performed experiments to check whether there was a difference compared to when we used 20 
training data. Five training data were used, and the data used as training data were changed, as shown 
in Fig. 7. We tested the difference between using 20 training data and using 5 training data, when the 
data used as training data were changed. 

 

 
Fig. 7. Extracting time-based features from a time event. 
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Five data from the genuine user's 20 training data were used for training, and five data from the 
genuine user's test data and an impostor's test data were used to check performance. In Table 6, darker 
cell colors represent higher feature type discrimination and lighter cell colors represent lower feature 
type discrimination. 

 
Table 6. OCSVM Classification Results (Unit: %, Highlighted Parts: Feature vectors with a low EER for 
user) 

Time Acc Lacc Gyr Ugyr 

User1 

User2 

User3 

User4 

User5 

User6 

 

Table 6 shows that each user has feature types that had the exact same high discrimination as using all 
the training data for User 2, User 5, and User 6. For User 1, it was not exactly the same as using all the 
training data, but it can be seen that the Acc and Lacc feature types had the highest discrimination. In 
the case of User 3, the Gyr feature type had relatively high discrimination, and it can be seen that the 
Time, Acc, and Ugyr feature types also had a fair amount of discrimination. Just like in Table 2 where 
the EER for each of User 3's feature types was on a similar level with the exception of the Lacc feature 
type, here there is a similar distribution according to changes in the training data. User 4 showed a 
similar EER for each feature type as the total data, so on Table 3 there was no feature type which stood 
out. 

Fig. 8 shows an EER change graph for each feature type when a sliding window was set to 5 according 
to the user. For User 1's Gyr feature type, there were almost no features with discrimination which can 
distinguish between other users, so it can be seen that it almost cannot distinguish between other users. 
It can be seen that when 20 items of training data were used, the classification performance deviation of 
the Acc and Lacc, which showed the best classification performance, depended on changes in the 
training data. For Acc, when the training data items 0 to 13 were used, a good classification 
performance was shown, but when training data items 14 and higher were used, the results showed that 
the classification went well and later did not go well. For Lacc, the classification performance gradually 
improved in training data items 0 to 11, but then the performance became poor again until training 
data item 18. However, finally after items 14 and 15, good performance was shown again. The time 
feature was a feature type in which performance gradually became good with almost no performance 
deviation. It can be seen that the EER performance gradually improved according to changes in the 
training data. However, when all 20 training data items were used, it showed a 5% performance drop 
compared to Acc and Lacc. 

For User 2, the Gyr feature type was almost unable to distinguish different users just as with User 1, 
and Acc and Lacc showed poor classification performance. These feature types showed the worst 
performance in the tests using 20 items as well. The Ugyr feature type showed similar performance 
improvements as the Time feature type until the 13th data item, but from the 14th item on, its 
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performance dropped. The Time feature type showed comparatively steady classification performance 
with an EER under 10%, and it was the feature type that showed the best performance in the tests using 
20 data items.  
 

 
 
Fig. 8. Users EER on change of Training data. X axis is start index of training data range (window size: 
5) and y axis is EER (%). 

 
For User 3, steady EER performance improvements were shown according to the training data 

changes, with the exception of the Gyr and Lacc feature types. Acc showed particularly good 
performance, and it had the second best classification performance in the tests using 20 items. Gyr, 
which showed the best performance in the tests with 20 items, had the largest deviation in classification 
performance according to changes in the training data, and from training data item 6 to 16, it showed 
good performance, and in the interval from training data 14 to 19, it showed the best performance. 
However, overall it showed the worst performance. When all 20 training data items were used, at an 
EER of 10% it showed merely 1.67% preceding performance with the Acc feature type. 

In the case of User 4, the Ugyr feature type showed the best EER performance in the interval up to 
training data item 10, and it showed EER performance improvements according to changes in the 
training data. However, in the later training data interval, it showed a performance drop. For the Time 
feature type, it showed a relatively even ER performance with no large deviation. 
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For User 5, the Ugyr feature type showed relatively good classification performance compared to 
other feature types, and in the training data interval after 13, it showed performance slowed to 0%. The 
Ugyr feature type also showed good performance in the interval after item 13, and these two feature 
types showed the best performance compared to when 20 training data items were used. 

User 6 showed steady performance during changes to the training data, which was almost the same as 
the results when 20 training data items were used. The Acc and Ugyr feature types showed steady 
performance with an EER near 0% during training data changes, and this was almost the same as the 
performance when 20 training data items were used, which also showed an EER of 0%. The Time feature 
type also showed an even performance during changes to the training data with no EER deviation and an 
EER around 15%, and it showed the same performance in the results for 20 training data items. 

In order to see the difference in EER performance according to changes in training data, a sliding 
window was used with the window value set at 5, and the results showed a performance which was 
broadly similar to when 20 training data items were used. For some users, different feature types 
showed a more even EER distribution. 

4.3. Performance Changes According to Combinations of Feature Types 

Using the aforementioned experiment results, we combined feature types with high discrimination 
for each user and performed experiments to see if it would produce improved classification 
performance as shown in Table 7. When a single feature type showed good performance (User 2), 
features were not combined, but when several features showed equally good performance, features were 
combined. In the case of User 6, Acc and Ugyr both obtained an EER of 0%, and it was confirmed that 
the two feature types show the same performance when combined. A maximum of 2 or 3 features were 
combined per user. 

Table 7. Classification performance on feature type combination 
User Feature Type Combination EER FRR FAR vs. B.S.F. vs. A.F 
User1 Time + Acc + Lacc 0 0 0 +6.67 +3.33 
User2 Time 0 0 0 - - 

User3 Acc + Gyr 8.3 0 16.67 +1.7 +1.7 
User4 Time + Ugyr 10 0 20 +1.67 +11.67 
User5 Gyr + Ugyr 3.33 0 6.67 0 +10 

User6 Acc + Ugyr 0 0 0 0 0 
B.S.F.=best single feature type, A.F.=all feature types. 

Combinations of features showed better performance than a single feature combination. In the case 
of User 1, they improved performance over a single feature by 6.67%, and they improved performance 
over a combination of all features by 3.33%. For User 3, a combination of the Acc and Gyr feature types 
showed a 1.7% performance improvement over both a single feature combination and a combination of 
all features. For User 4 as well, it showed a performance improvement over a single feature combination 
and a combination of all features by 1.67% and 11.67% respectively. Through combinations of feature 
types, an FRR of 0% was achieved for all users. This means that after training with the genuine user's 
data and creating a model, the genuine user was always distinguished by the user's entered data. This 
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shows that it is possible to avoid classifying the genuine user as a non-genuine user and giving the user 
the inconvenience of reentering their PIN. 

5. Conclusion

By comparing input patterns, keystroke dynamics can distinguish a genuine user from an impostor 
during PIN or password-based authentication, even when the PIN or password has been exposed. It can 
be used to compensate for the existing limitations in commonly used smartphone PIN authentication. 

In the past, time-based and sensor-based features have been used in keystroke dynamics to 
distinguish users' input patterns. However, the PIN and input style of each user is different. It was 
confirmed through experiments that the performance of features customized for each user and that of 
all features are different and better performance can be obtained when feature type that better express a 
user's input pattern are used. To do this, we collected two additional sensors (linear acceleration and 
uncalibrated gyroscope), while accelerometer and gyroscope sensor data were collected in previous 
studies. We compared the case where the all feature types were used and the case where each feature 
type was used. The performance improvement was 5.27% on the average when using the feature type 
for each user rather than using the all feature types. Based on these experimental results, we confirmed 
the improvement of the maximum EER of 11.67% by combining the high discriminatory feature types. 
We used the familiar PIN to represent the input patter of each user, and reflected the difference in PINs 
for each user in real life. 

In future research, we plan to collect experimental data from more users and study algorithms that 
can select feature types and individual features on each feature type that better represent user input 
patterns. In addition, we will compare to state-of-the art automated feature selection approach such as 
filter and wrapper approach. 
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