• 제목/요약/키워드: Feature space

검색결과 1,365건 처리시간 0.033초

세그멘테이션에 의한 특징공간과 영상벡터를 이용한 얼굴인식 (Face Recognition using the Feature Space and the Image Vector)

  • 김선종
    • 제어로봇시스템학회논문지
    • /
    • 제5권7호
    • /
    • pp.821-826
    • /
    • 1999
  • This paper proposes a face recognition method using feature spaces and image vectors in the image plane. We obtain the 2-D feature space using the self-organizing map which has two inputs from the axis of the given image. The image vector consists of its weights and the average gray levels in the feature space. Also, we can reconstruct an normalized face by using the image vector having no connection with the size of the given face image. In the proposed method, each face is recognized with the best match of the feature spaces and the maximum match of the normally retrieval face images, respectively. For enhancing recognition rates, our method combines the two recognition methods by the feature spaces and the retrieval images. Simulations are conducted on the ORL(Olivetti Research laboratory) images of 40 persons, in which each person has 10 facial images, and the result shows 100% recognition and 14.5% rejection rates for the 20$\times$20 feature sizes and the 24$\times$28 retrieval image size.

  • PDF

Kernel PCA를 이용한 GMM 기반의 음성변환 (GMM Based Voice Conversion Using Kernel PCA)

  • 한준희;배재현;오영환
    • 대한음성학회지:말소리
    • /
    • 제67호
    • /
    • pp.167-180
    • /
    • 2008
  • This paper describes a novel spectral envelope conversion method based on Gaussian mixture model (GMM). The core of this paper is rearranging source feature vectors in input space to the transformed feature vectors in feature space for the better modeling of GMM of source and target features. The quality of statistical modeling is dependent on the distribution and the dimension of data. The proposed method transforms both of the distribution and dimension of data and gives us the chance to model the same data with different configuration. Because the converted feature vectors should be on the input space, only source feature vectors are rearranged in the feature space and target feature vectors remain unchanged for the joint pdf of source and target features using KPCA. The experimental result shows that the proposed method outperforms the conventional GMM-based conversion method in various training environment.

  • PDF

Comparative Analysis of Building Models to Develop a Generic Indoor Feature Model

  • Kim, Misun;Choi, Hyun-Sang;Lee, Jiyeong
    • 한국측량학회지
    • /
    • 제39권5호
    • /
    • pp.297-311
    • /
    • 2021
  • Around the world, there is an increasing interest in Digital Twin cities. Although geospatial data is critical for building a digital twin city, currently-established spatial data cannot be used directly for its implementation. Integration of geospatial data is vital in order to construct and simulate the virtual space. Existing studies for data integration have focused on data transformation. The conversion method is fundamental and convenient, but the information loss during this process remains a limitation. With this, standardization of the data model is an approach to solve the integration problem while hurdling conversion limitations. However, the standardization within indoor space data models is still insufficient compared to 3D building and city models. Therefore, in this study, we present a comparative analysis of data models commonly used in indoor space modeling as a basis for establishing a generic indoor space feature model. By comparing five models of IFC (Industry Foundation Classes), CityGML (City Geographic Markup Language), AIIM (ArcGIS Indoors Information Model), IMDF (Indoor Mapping Data Format), and OmniClass, we identify essential elements for modeling indoor space and the feature classes commonly included in the models. The proposed generic model can serve as a basis for developing further indoor feature models through specifying minimum required structure and feature classes.

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘 (Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity)

  • 박용희;권오석
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.85-95
    • /
    • 2005
  • 본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.

  • PDF

법학전문도서관 디자인 특성 및 공간구성방법에 관한 연구 (A Study of the Law School Library Design Feature & Spatial Composition)

  • 최성우
    • 한국산학기술학회논문지
    • /
    • 제13권6호
    • /
    • pp.2812-2825
    • /
    • 2012
  • 본 연구의 목적은 법학전문도서관의 기존사례 분석을 통하여 공간구성 특성을 조사, 규정하고 교육이념에 부응하는 법학전문도서관 특성을 반영한 계획안의 제시함으로서 법학전문도서관의 계획요소 및 디자인을 제안하고자 하였다. 법학도서관의 공간구성특성을 요약하면 (1) 접근성을 고려한 진입층의 공간구성 (2) 열람공간 이용자 중심의 열람실 공간구성 (3) 교육 및 연구 공간과 열람실의 연계성을 고려한 공간 구성으로 법학도서관의 특성을 규정할 수 있다. 이러한 결과를 토대로 한 법학도서관 설계 시 다음과 같은 디자인 쟁점사항을 도출하였다. 진입층 공간구성은 교육의 장소로서의 이용행태, 접근성과 연계성의 측면을 고려하여 공용공간과 함께 열람공간을 계획하여야 한다. 이용자 중심의 열람실과 서고의 공간구성이 계획되기 위한 방법으로는 일반열람실 또는 지정 도서실이 진입공간과 직접 연계되는 계획이 이루어 져야 된다. 교육 및 연구 공간과 열람실이 유기적으로 연결되어야 함에 따라서 코어를 중심으로 교육 및 연구 공간과 열람실을 수직적으로 연계하여 열람실과 교육 연구 공간의 연계성을 높이는 동시에 외부에서의 접근성도 고려한 계획이 되어야한다.

다중 클래스 분포 문제에 대한 분류 정확도 분석 (Analysis of Classification Accuracy for Multiclass Problems)

  • 최의선;이철희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(4)
    • /
    • pp.190-193
    • /
    • 2000
  • In this paper, we investigate the distribution of classification accuracies of multiclass problems in the feature space and analyze performances of the conventional feature extraction algorithms. In order to find the distribution of classification accuracies, we sample the feature space and compute the classification accuracy corresponding to each sampling point. Experimental results showed that there exist much better feature sets that the conventional feature extraction algorithms fail to find. In addition, the distribution of classification accuracies is useful for developing and evaluating the feature extraction algorithm.

  • PDF

A Novel Statistical Feature Selection Approach for Text Categorization

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1397-1409
    • /
    • 2017
  • For text categorization task, distinctive text features selection is important due to feature space high dimensionality. It is important to decrease the feature space dimension to decrease processing time and increase accuracy. In the current study, for text categorization task, we introduce a novel statistical feature selection approach. This approach measures the term distribution in all collection documents, the term distribution in a certain category and the term distribution in a certain class relative to other classes. The proposed method results show its superiority over the traditional feature selection methods.

Kernel Methods를 이용한 Human Breast Cancer의 subtype의 분류 및 Feature space에서 Clinical Outcome의 pattern 분석 (Subtype classification of Human Breast Cancer via Kernel methods and Pattern Analysis of Clinical Outcome over the feature space)

  • Kim, Hey-Jin;Park, Seungjin;Bang, Sung-Uang
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.175-177
    • /
    • 2003
  • This paper addresses a problem of classifying human breast cancer into its subtypes. A main ingredient in our approach is kernel machines such as support vector machine (SVM). kernel principal component analysis (KPCA). and kernel partial least squares (KPLS). In the task of breast cancer classification, we employ both SVM and KPLS and compare their results. In addition to this classification. we also analyze the patterns of clinical outcomes in the feature space. In order to visualize the clinical outcomes in low-dimensional space, both KPCA and KPLS are used. It turns out that these methods are useful to identify correlations between clinical outcomes and the nonlinearly protected expression profiles in low-dimensional feature space.

  • PDF

Finding the best suited autoencoder for reducing model complexity

  • Ngoc, Kien Mai;Hwang, Myunggwon
    • 스마트미디어저널
    • /
    • 제10권3호
    • /
    • pp.9-22
    • /
    • 2021
  • Basically, machine learning models use input data to produce results. Sometimes, the input data is too complicated for the models to learn useful patterns. Therefore, feature engineering is a crucial data preprocessing step for constructing a proper feature set to improve the performance of such models. One of the most efficient methods for automating feature engineering is the autoencoder, which transforms the data from its original space into a latent space. However certain factors, including the datasets, the machine learning models, and the number of dimensions of the latent space (denoted by k), should be carefully considered when using the autoencoder. In this study, we design a framework to compare two data preprocessing approaches: with and without autoencoder and to observe the impact of these factors on autoencoder. We then conduct experiments using autoencoders with classifiers on popular datasets. The empirical results provide a perspective regarding the best suited autoencoder for these factors.