• 제목/요약/키워드: Feature point

검색결과 1,350건 처리시간 0.028초

SIFT를 이용한 내시경 영상에서의 특징점 추출 (Feature Extraction for Endoscopic Image by using the Scale Invariant Feature Transform(SIFT))

  • 오장석;김호철;김형률;구자민;김민기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.6-8
    • /
    • 2005
  • Study that uses geometrical information in computer vision is lively. Problem that should be preceded is matching problem before studying. Feature point should be extracted for well matching. There are a lot of methods that extract feature point from former days are studied. Because problem does not exist algorithm that is applied for all images, it is a hot water. Specially, it is not easy to find feature point in endoscope image. The big problem can not decide easily a point that is predicted feature point as can know even if see endoscope image as eyes. Also, accuracy of matching problem can be decided after number of feature points is enough and also distributed on whole image. In this paper studied algorithm that can apply to endoscope image. SIFT method displayed excellent performance when compared with alternative way (Affine invariant point detector etc.) in general image but SIFT parameter that used in general image can't apply to endoscope image. The gual of this paper is abstraction of feature point on endoscope image that controlled by contrast threshold and curvature threshold among the parameters for applying SIFT method on endoscope image. Studied about method that feature points can have good distribution and control number of feature point than traditional alternative way by controlling the parameters on experiment result.

  • PDF

스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘 (Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity)

  • 박용희;권오석
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.85-95
    • /
    • 2005
  • 본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.

  • PDF

모바일 디바이스를 이용한 3차원 특징점 추출 기법 (3D feature point extraction technique using a mobile device)

  • 김진겸;서영호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.256-257
    • /
    • 2022
  • 본 논문에서는 단일 모바일 디바이스의 움직임을 통해 3차원 특징점을 추출하는 방법에 대해 소개한다. 단안 카메라를 이용해 카메라 움직임에 따라 2D 영상을 획득하고 Baseline을 추정한다. 특징점 기반의 스테레오 매칭을 진행한다. 특징점과 디스크립터를 획득하고 특징점을 매칭한다. 매칭된 특징점을 이용해 디스패리티를 계산하고 깊이값을 생성한다. 3차원 특징점은 카메라 움직임에 따라 업데이트 된다. 마지막으로 장면 전환 검출을 이용하여 장면 전환시 특징점을 리셋한다. 위 과정을 통해 특징점 데이터베이스에 평균 73.5%의 저장공간 추가 확보를 할 수 있다. TUM Dataset의 Depth Ground truth 값과 RGB 영상으로 제안한 알고리즘을 적용하여 3차원 특징점 결과와 비교하여 평균 26.88mm의 거리 차이가 나는것을 확인하였다.

  • PDF

Augmented Feature Point Initialization Method for Vision/Lidar Aided 6-DoF Bearing-Only Inertial SLAM

  • Yun, Sukchang;Lee, Byoungjin;Kim, Yeon-Jo;Lee, Young Jae;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1846-1856
    • /
    • 2016
  • This study proposes a novel feature point initialization method in order to improve the accuracy of feature point positions by fusing a vision sensor and a lidar. The initialization is a process that determines three dimensional positions of feature points through two dimensional image data, which has a direct influence on performance of a 6-DoF bearing-only SLAM. Prior to the initialization, an extrinsic calibration method which estimates rotational and translational relationships between a vision sensor and lidar using multiple calibration tools was employed, then the feature point initialization method based on the estimated extrinsic calibration parameters was presented. In this process, in order to improve performance of the accuracy of the initialized feature points, an iterative automatic scaling parameter tuning technique was presented. The validity of the proposed feature point initialization method was verified in a 6-DoF bearing-only SLAM framework through an indoor and outdoor tests that compare estimation performance with the previous initialization method.

컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류 (Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector)

  • 유제훈;고광은;심귀보
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

지문의 방향 성분을 이용한 reference point 검출과 filterbank를 이용한 feature추출 방법 (Reference point detection using directional component of fingerprint and feature extraction using filterbank)

  • 박준범;고한석
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2002년도 종합학술발표회논문집
    • /
    • pp.417-420
    • /
    • 2002
  • 본 논문에서는, 지문인증 시스템에 있어서 방향성분의 통계적 방법을 이용한 reference point 검출 알고리즘과 이 reference point를 중심으로 하여 기존의 filterbank의 단점을 개선한 feature 추출 알고리즘을 소개한다. 제안한 reference point검출 알고리즘은 기존의 Poincare방법의 단점인 세밀한 전처리 과정과 arch type의 지문에 대해 장점을 가지며, 개선한 filterbank방법은 기존의 filterbank방법보다 reference point의 검출 위치에 덜 민감하며, 좀 더 높은 인증률을 보였다.

  • PDF

특징점을 이용한 매니퓰래이터 자세 시각 제어 (Visual Servoing of manipulator using feature points)

  • 박성태;이민철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1087-1090
    • /
    • 2004
  • stereo vision system is applied to a mobile manipulator for effective tasks. The robot can recognize a target and compute the position of the target using a stereo vision system. In this paper we persent a visual approach to the problem of object grasping. First we propose object recognization method which can find the object position and pose using feature points. A robot recognizes the feature point to Object. So a number of feature point is the more, the better, but if it is overly many, the robot have to process many data, it makes real-time image processing ability weakly. In other to avoid this problem, the robot selects only two point and recognize the object by line made by two points. Second we propose trajectory planing of the robot manipulator. Using grometry of between object and gripper, robot can find a goal point to translate the robot manipulator, and then it can grip the object successfully.

  • PDF

Feature curve extraction from point clouds via developable strip intersection

  • Lee, Kai Wah;Bo, Pengbo
    • Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper, we study the problem of computing smooth feature curves from CAD type point clouds models. The proposed method reconstructs feature curves from the intersections of developable strip pairs which approximate the regions along both sides of the features. The generation of developable surfaces is based on a linear approximation of the given point cloud through a variational shape approximation approach. A line segment sequencing algorithm is proposed for collecting feature line segments into different feature sequences as well as sequential groups of data points. A developable surface approximation procedure is employed to refine incident approximation planes of data points into developable strips. Some experimental results are included to demonstrate the performance of the proposed method.

최대우도법을 이용한 라이다 포인트군집의 박스특징 추정 (Box Feature Estimation from LiDAR Point Cluster using Maximum Likelihood Method)

  • 김종호;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.123-128
    • /
    • 2021
  • This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.

Online Face Avatar Motion Control based on Face Tracking

  • Wei, Li;Lee, Eung-Joo
    • 한국멀티미디어학회논문지
    • /
    • 제12권6호
    • /
    • pp.804-814
    • /
    • 2009
  • In this paper, a novel system for avatar motion controlling by tracking face is presented. The system is composed of three main parts: firstly, LCS (Local Cluster Searching) method based face feature detection algorithm, secondly, HMM based feature points recognition algorithm, and finally, avatar controlling and animation generation algorithm. In LCS method, face region can be divided into many small piece regions in horizontal and vertical direction. Then the method will judge each cross point that if it is an object point, edge point or the background point. The HMM method will distinguish the mouth, eyes, nose etc. from these feature points. Based on the detected facial feature points, the 3D avatar is controlled by two ways: avatar orientation and animation, the avatar orientation controlling information can be acquired by analyzing facial geometric information; avatar animation can be generated from the face feature points smoothly. And finally for evaluating performance of the developed system, we implement the system on Window XP OS, the results show that the system can have an excellent performance.

  • PDF