• Title/Summary/Keyword: Feature modeling

Search Result 639, Processing Time 0.02 seconds

Modification of Solid Models Independent of Design Features (디자인 피쳐에 의존하지 않는 솔리드 모델의 수정)

  • Woo, Yoon-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • With the advancements of the Internet and CAD data translation techniques, more CAD models are transferred from a CAD system to another through the network and interoperability is getting a common word in the CAD industry. However, when a CAD model is translated for an incompatible system into a neutral format such as STEP or IGES, its precious feature information is lost. When this feature information is lost, the advantage of feature based modeling is not valid any longer, and modification for the model is purely dependent on geometric and topological manipulations. However, the capabilities of the existing methods to modify these feature-independent models are limited as the modification involves a topological change in the model. To address this issue, we present a volumetric method to modify the solid models in neutral format. First, this method selectively decomposes the solid model to separate the portion of interest called feature volume. Next, the designer modifies the feature volume without concerning a topological change. Finally, the feature volume is united with the original solid model to complete the modification process. The results of test cases are presented to attest the usefulness of the proposed method.

Creation Techniques of UV Nodes Needed in Maya 3D Modeling Convert (마야 3D모델링 변환에 필요한 UV노드 생성기법)

  • Kim, Hyun-Mun;Song, Teuk-Seob
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.534-538
    • /
    • 2008
  • Maya currently is used form various area in 3D graphics. Maya provide that modeling methods are NURBs, Polygon, and Subdivision. There are special feature their modeling method. So we need to modeling convert. After modeling convert, there is no UV node. In this paper, we study creating techniques UV node which NURBs modeling convert Subdivsion modeling. Moreover, we present prototype implementation.

  • PDF

An OSI and SN Based Persistent Naming Approach for Parametric CAD Model Exchange (기하공간정보(OSI)와 병합정보(SN)을 이용한 고유 명칭 방법)

  • Han S.H.;Mun D.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.1
    • /
    • pp.27-40
    • /
    • 2006
  • The exchange of parameterized feature-based CAD models is important for product data sharing among different organizations and automation systems. The role of feature-based modeling is to gonerate the shape of product and capture design intends In a CAD system. A feature is generated by referring to topological entities in a solid. Identifying referenced topological entities of a feature is essential for exchanging feature-based CAD models through a neutral format. If the CAD data contains the modification history in addition to the construction history, a matching mechanism is also required to find the same entity in the new model (post-edit model) corresponding to the entity in the old model (preedit model). This problem is known as the persistent naming problem. There are additional problems arising from the exchange of parameterized feature-based CAD models. Authors have analyzed previous studies with regard to persistent naming and characteristics for the exchange of parameterized feature-based CAD models, and propose a solution to the persistent naming problem. This solution is comprised of two parts: (a) naming of topological entities based on the object spore information (OSI) and secondary name (SN); and (b) name matching under the proposed naming.

Biological Feature Selection and Disease Gene Identification using New Stepwise Random Forests

  • Hwang, Wook-Yeon
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.64-79
    • /
    • 2017
  • Identifying disease genes from human genome is a critical task in biomedical research. Important biological features to distinguish the disease genes from the non-disease genes have been mainly selected based on traditional feature selection approaches. However, the traditional feature selection approaches unnecessarily consider many unimportant biological features. As a result, although some of the existing classification techniques have been applied to disease gene identification, the prediction performance was not satisfactory. A small set of the most important biological features can enhance the accuracy of disease gene identification, as well as provide potentially useful knowledge for biologists or clinicians, who can further investigate the selected biological features as well as the potential disease genes. In this paper, we propose a new stepwise random forests (SRF) approach for biological feature selection and disease gene identification. The SRF approach consists of two stages. In the first stage, only important biological features are iteratively selected in a forward selection manner based on one-dimensional random forest regression, where the updated residual vector is considered as the current response vector. We can then determine a small set of important biological features. In the second stage, random forests classification with regard to the selected biological features is applied to identify disease genes. Our extensive experiments show that the proposed SRF approach outperforms the existing feature selection and classification techniques in terms of biological feature selection and disease gene identification.

A Study on the Development of Feature-Based NC Part Programming System 'FeaTURN' for Turning Operation (특징형상을 이용한 NC선반가공 프로그래밍 시스템 'FeaTURN'의 개발에 관한 연구)

  • 강신한;이재원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 1993
  • The feature based modeling approach is useful for post-CAD related works such as process planning and NC part programming. This paper describes the development of 'FeaTURN' system which is feature based NC part programming system for turning operation. The programming task in 'FeaTURN' system becomes easy and effective with the assistance of feature icons. The manufacturing attributes can be handled toghther with the features during input procedure. The cutter location data (CLD) is determined by the processor module. The post process module converts the CL data to machine control data (MCD). Also, the system graphically displays the tool path.

A Fractional Integration Analysis on Daily FX Implied Volatility: Long Memory Feature and Structural Changes

  • Han, Young-Wook
    • Asia-Pacific Journal of Business
    • /
    • v.13 no.2
    • /
    • pp.23-37
    • /
    • 2022
  • Purpose - The purpose of this paper is to analyze the dynamic factors of the daily FX implied volatility based on the fractional integration methods focusing on long memory feature and structural changes. Design/methodology/approach - This paper uses the daily FX implied volatility data of the EUR-USD and the JPY-USD exchange rates. For the fractional integration analysis, this paper first applies the basic ARFIMA-FIGARCH model and the Local Whittle method to explore the long memory feature in the implied volatility series. Then, this paper employs the Adaptive-ARFIMA-Adaptive-FIGARCH model with a flexible Fourier form to allow for the structural changes with the long memory feature in the implied volatility series. Findings - This paper finds statistical evidence of the long memory feature in the first two moments of the implied volatility series. And, this paper shows that the structural changes appear to be an important factor and that neglecting the structural changes may lead to an upward bias in the long memory feature of the implied volatility series. Research implications or Originality - The implied volatility has widely been believed to be the market's best forecast regarding the future volatility in FX markets, and modeling the evolution of the implied volatility is quite important as it has clear implications for the behavior of the exchange rates in FX markets. The Adaptive-ARFIMA-Adaptive-FIGARCH model could be an excellent description for the FX implied volatility series

Fixed-Point Modeling and Performance Analysis of a Face Recognition Algorithm For Hardware Design (SoC 하드웨어 설계를 위한 얼굴 인식 알고리즘의 고정 소수점 모델 구현 및 성능 분석)

  • Kim, Young-Jin;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.1
    • /
    • pp.102-112
    • /
    • 2007
  • This paper includes an analysis of face recognition algorithm to design hardware and presents fixed point model in accordance with it. Face recognition algorithm detects the positions of face and eyes to make use of their feature data to detect and verify human faces. It distinguishes a particular user by means of comparing them with registered face features. To implement the face recognition algorithm into hardware, we developed its fixed point model by analyzing face feature parameters, face acquisition data, and feature detection parameters and operation structure.

Damage detection of bridges based on spectral sub-band features and hybrid modeling of PCA and KPCA methods

  • Bisheh, Hossein Babajanian;Amiri, Gholamreza Ghodrati
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.179-200
    • /
    • 2022
  • This paper proposes a data-driven methodology for online early damage identification under changing environmental conditions. The proposed method relies on two data analysis methods: feature-based method and hybrid principal component analysis (PCA) and kernel PCA to separate damage from environmental influences. First, spectral sub-band features, namely, spectral sub-band centroids (SSCs) and log spectral sub-band energies (LSSEs), are proposed as damage-sensitive features to extract damage information from measured structural responses. Second, hybrid modeling by integrating PCA and kernel PCA is performed on the spectral sub-band feature matrix for data normalization to extract both linear and nonlinear features for nonlinear procedure monitoring. After feature normalization, suppressing environmental effects, the control charts (Hotelling T2 and SPE statistics) is implemented to novelty detection and distinguish damage in structures. The hybrid PCA-KPCA technique is compared to KPCA by applying support vector machine (SVM) to evaluate the effectiveness of its performance in detecting damage. The proposed method is verified through numerical and full-scale studies (a Bridge Health Monitoring (BHM) Benchmark Problem and a cable-stayed bridge in China). The results demonstrate that the proposed method can detect the structural damage accurately and reduce false alarms by suppressing the effects and interference of environmental variations.

Design Feature-Based Jetfighter Shape Modeling

  • Zang, Jing;Liu, Hu;Liu, Tianping;Ni, Xianping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.3
    • /
    • pp.222-228
    • /
    • 2013
  • A jetfighter shape modeling method based on design features is researched, to improve the efficiency of shape modeling in the stage of conceptual aircraft design. The aircraft's general design features and shape parameters, including geometric and position parameters, are described. The coordinate systems of the entire aircraft and its components are defined. As a sample of local shape, a method of inlet intake modeling is introduced. The whole process of the modeling method is proposed. Three examples of different jetfighters are listed, to describe the achievement of basic layout, which includes four main elements. The Fusion of Components can be achieved by regulating the details of the sections of the fuselage. Sample Cases of typical layouts are shown to verify the effectiveness of the proposed method, which provides the basis for further analysis and optimization.

Template-based Automatic 3D Model Generation from Automotive Freehand Sketch (템플릿을 이용한 자동차 프리핸드 스케치의 3D 모델로 자동변환)

  • Cheon, S.U.;Han, S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.283-297
    • /
    • 2007
  • Seamless data integration in the CAx chain of the CAD/CAPP/CAM/CNC has been achieved to a high degree, but research concerning the transfer of data from conceptual sketches to a CAD system should be carried out further. This paper presents a method for reconstructing a 3D model from a freehand sketch. Sketch-based modeling research can be classified into gestural modeling methods and reconstructional modeling methods. This research involves the reconstructional modeling method. Here, Mitani's seminal work, designed for box-shaped 3D model using a predefined template, is improved by leveraging a relational template and specialized for automotive design. Matching between edge graphs of the relational template and the sketch is formulated and solved as the assignment problem using the feature vectors of the edges. Including the stroke preprocessing method required to generate an edge graph from a sketch, necessary procedures and relevant techniques for implementing the template-based modeling method are described. Examples from a working implementation are given.