IEIE Transactions on Smart Processing and Computing
/
제2권5호
/
pp.277-281
/
2013
Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.
본 논문에서는 패턴 매칭 방법에 근거하여 인식 단위가 음소인 음소 기반 인식 시스템을 구성하였다. 선택한 신경망 구조는 생물학적 신경망인 코호넨(T. Kohonen)의 SOFM(Self-Organizing Feature Map)으로 패턴 매칭 과정 중 클러스터러(clusterer)로 사용하였다. SOFM 신경망은 신호 공간에 대해서 최적의 국소(局所) 해부적 사상(local topographical mapping)에 의한 자기 조직화 과정을 수행하며, 그 결과 인식 문제에 있어서 상당히 높은 정확도를 나타낸다. 따라서 SOFM 신경망은 음소 인식에도 효과적으로 응용될 수 있다. 또한 음소 인식 시스템의 성능 향상을 위해 K-means클러스터링 알고리즘이 결합된 학습 알고리즘을 제안하였다. 제안된 음소 인식 시스템의 성능을 평가하기 위해 먼저, 인식 대상음소는 모음군 17개, 자음의 경우 파열음9개, 마찰음 3개, 파찰음 3개, 유음 및 비음 4개, 음소의 성질이 다른 종성 7개의 음소군으로 모두 43개의 음소를 대상으로 실험하였으며, 각 음소군에 대한 특징 지도를 구성하여 레이블러(labeler)의 기능을 수행하게 하였다. 화자 종속 인식 실험 결과 $87.2\%$의 인식률을 보였으며 제안한 학습법의 빠른 수렴성과 인식률 향상을 확인하였다.
본 논문에서는 로봇이 태스크와 관련된 부분에 시각 집중을 하도록 하기 위해서 기존의 상향식 주목 알고리즘을 확장한 질의 기반 시각 집중 알고리즘을 제안한다. 질의 기반 시각 집중 알고리즘은 로봇이 수행 할 태스크와 관련한 물체를 질의하면 그 물체의 속성을 분석하여 여러 종류의 도드라짐(Conspicuity) 영상 지도에 적용될 가중치 값을 작성한다. 그리고 가중치를 이용하여 도드라짐 영상 지도를을 합성한 Saliency 영상 지도를 작성하여 기존의 주목 알고리즘과 비교 평가를 수행하였다. 여기서는 일예로서 질의 물체의 속성을 색으로 사용하였다.
한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
/
pp.1046-1051
/
1994
It is known that SOFM has the property of effectively creating topographically the organized map of various features on input signals, SOFM can effectively be applied to the recognition of Korean phonemes. However, is isn't guaranteed that the network is sufficiently learned in SOFM algorithm. In order to solve this problem, we propose the learning algorithm combined with the conventional K-means clustering algorithm in fine-tuning stage. To evaluate the proposed algorithm, we performed speaker dependent recognition experiment using six phoneme classes. Comparing the performances of the Kohonen's algorithm with a proposed algorithm, we prove that the proposed algorithm is better than the conventional SOFM algorithm.
잡음 음성의 지각적 품질과 명료도 향상을 위해 활용되는 음성 향상은 크기 스펙트럼을 이용한 방법에서 크기와 위상을 같이 향상시킬 수 있는 복소 스펙트럼을 이용한 방법으로 연구되어왔다. 본 논문에서는 잡음 음성의 명료도와 품질을 더욱 향상시키기 위해 복소 스펙트럼 기반 음성 향상 시스템에 어텐션 기법을 적용하는 방안에 관해 연구를 수행하였다. 어텐션 기법은 additive attention을 기반으로 수행하며 복소 스펙트럼의 특성을 고려하여 어텐션 가중치를 계산할 수 있도록 하였다. 또한 특징 맵의 중요도를 고려하기 위해 전역 평균 풀링 연산을 같이 사용하였다. 복소 스펙트럼 기반 음성 향상은 Deep Complex U-Net(DCUNET) 모델을 기반으로 수행하였으며, additive attention은 Attention U-Net 모델에서 제안된 방법을 기반으로 연구를 수행하였다. 거실 환경의 잡음 데이터에 대해 음성 향상을 수행한 결과, 제안한 방법이 Source to Distortion Ratio(SDR), Perceptual Evaluation of Speech Quality(PESQ), Short Time Objective Intelligibility(STOI) 평가 지표에서 기준 모델보다 개선된 성능을 보였으며, 낮은 Signal-to-Noise Ratio(SNR) 조건의 다양한 배경 잡음 환경에 대해서도 일관된 성능 향상을 보였다. 이를 통해 제안한 음성 향상 시스템이 효과적으로 잡음 음성의 명료도와 품질을 향상시킬 수 있음을 보여주었다.
Past and current customer behavior is the best predicator of future customer behavior. This paper introduces a procedure on personalized defection detection and prevention for an online game site. The basic idea for our defection detection and prevention is adopted from the observation that potential defectors have a tendency to take a couple of months or weeks to gradually change their behavior (i.e. trim-out their usage volume) before their eventual withdrawal. For this purpose, we suggest a SOM (Self-Organizing Map) based procedure to determine the possible states of customer behavior from past behavior data. Based on this representation of the state of behavior, potential defectors are detected by comparing their monitored trajectories of behavior states with frequent and confident trajectories of past defectors. The key feature of this study includes a defection prevention procedure which recommends the desirable behavior state for the ext period so as to lower the likelihood of defection. The defection prevention procedure can be used to design a marketing campaign on an individual basis because it provides desirable behavior patterns for the next period. The experiments demonstrate that our approach is effective for defection prevention and efficient for defection detection because it predicts potential defectors without deterioration of prediction accuracy compared to that of the MLP (Multi-Layer Perceptron) neural network.
Irregular temporal sampling is a common feature of geophysical and biological time series in remote sensing. This study proposes an on-line system for reconstructing observation image series contaminated by noises resulted from mechanical problems or sensing environmental condition. There is also a high likelihood that during the data acquisition periods the target site corresponding to any given pixel may be covered by fog or cloud, thereby resulting in bad or missing observation. The surface parameters associated with the land are usually dependent on the climate, and many physical processes that are displayed in the image sensed from the land then exhibit temporal variation with seasonal periodicity. A feedback system proposed in this study reconstructs a sequence of images remotely sensed from the land surface having the physical processes with seasonal periodicity. The harmonic model is used to track seasonal variation through time, and a Gibbs random field (GRF) is used to represent the spatial dependency of digital image processes. The experimental results of this simulation study show the potentiality of the proposed system to reconstruct the image series observed by imperfect sensing technology from the environment which are frequently influenced by bad weather. This study provides fundamental information on the elements of the proposed system for right usage in application.
현재의 지문 인식 시스템은 지문 패턴의 복제와 지문 특징점의 해킹이라는 불안한 요소가 잠재되어 있어, 시스템 오동작의 주요 원인이 되기도 한다. 이에 본 논문에서는 신체의 일부인 지문을 주 핵심 인식기로 사용하고, 여기에 최근 널리 이용 되고 있는 화자 인증을 이용하여 직렬 형태의 다중 생체인식 시스템을 구현하였다. 구현된 시스템은 다중생체인식시스템으로 먼저 음성에 대한 인증과정이 성공하면 지문에 대한 인식과정을 수행하는 구조로 되어있다. 또한 효율적인 실시간 인증 처리를 위해 기존의 음성 인식 알고리즘 중에서 화자 종속형인 DTW(Dynamic Time Waning) 알고리즘을 사용하였으며, 지문 인식 알고리즘으로는 계산량을 고려하여 인공지능 기법인 KSOM(Kohonen Self-Organizing feature Map) 알고리즘을 적용하였다. 본 논문에서 구현한 다중생체 인식시스템을 실험한 결과 지문과 음성을 각각 이용한 단일인식시스템보다 본인거부율은 $2\~7\%$정도 떨어졌지만, 인식시스템에서 가장 중요한 요소인 타인수락율은 전혀 발생하지 않음을 확인하였다. 아울러 인식테스트 시간 또한 기존의 단일 생체 인식 시스템과 차이가 거의 없었으며, 인식에 걸린 시간은 평균 1.5초 정도였다. 이에 구현된 다중 생체 인의 시스템은 여러 가지 실험 결과 단일 인식 시스템보다 더 효율적인 보안 시스템임을 증명하였다.
본 연구는 심각해지는 토지문제를 해결하기 위해 최근에 시행되고 있는 여러가지 토지제도들이 효과적으로 운용되도록 지가를 정확히 산정하고자 하는 움직임에 대한 기초 연구로서, 다른 토지이용에 비해 월등 높은 지가를 보이고 중은 범위에서도 그 변동폭이 큰 상업지를 택하여, 상업지지가의 지역적 차이가 왜 발생하는지 알아보고자 하였다. $1989{\sim}1996$ 동안의 상업지역의 확산은 시 외곽에 빠르게 조성되고 있는 고밀도 아파트 단지를 배후지로 하여 주요 간선도로변을 따라 활발하게 이루어지고 있는 반면, 도심부는 영세한 부지규모 및 노후화한 건물들로 말미암아 급변하고 있는 상업환경의 변화에 능동적으로 대응하지 못하므로서 지가하락 현상을 보이고 있다. 상업지지가와 관련이 있으리라고 예상되는 6개 변수를 이용하여 중다희귀분석을 적용한 결과 보행자 통행량과 도심으로부터의 거리 등 두 변수가 상업지지가 변화량의 65% 정도를 설명해 주었다. 설명되지 않은 35%의 해명을 위해 잔차분석을 행한 결과 도심부의 과소예측, 시 외곽의 과대 예측을 읽을 수 있었는데 이는 광주시의 단핵구조적 특성의 반영일 뿐만 아니라 이 모델이 갖고 있는 한계이다.
센서 및 위성 기술의 발전에 따라 전세계적으로 다양한 고해상도 다중대역 위성영상이 활용 가능해지고 있다. 다중대역 센서가 가지는 파장에 기인한 고유한 반사, 투과, 산란 특성에 따라 다중대역 위성영상은 지구 관측에 대한 다양한 상호보완적 지표정보를 제공한다. 특히, short-wave infrared (SWIR) 대역은 긴 파장으로 인해 가시광 대역에 비해 Rayleigh 산란에 적게 영향을 받으며, 이로 인해 특정 대기입자를 투과할 수 있다는 특징을 지닌다. 산불, 폭발 등에 의해 발생된 짙은 연기는 가시광 대역의 영상의 가시성을 저하시키고 일부 지역에 대한 지표를 차폐시키는데, SWIR 대역은 이러한 연기에 의해 가려진 지역에 대한 지표정보를 추가로 제공해주기도 한다. 본 연구에서는 이러한 SWIR 대역과 가시광 대역의 영상 정보를 융합하는 다중해상도 변환 기반의 영상 융합 기법을 제안하였다. 제안된 융합 기법의 목적은 상호보완적 관계에 있는 가시광 대역에서의 고해상도 세부적 배경정보와 SWIR 대역에서의 연기 지역에 대한 지표정보를 모두 내포하고 있는 단일 영상을 생성하는 것이다. 이를 위해 본 연구에서는 라플라시안(Laplacian) 피라미드 기반의 다중해상도 변환 기법을 가시광-SWIR 영상 융합에 적용하였다. 다중해상도 변환 기법은 영상 융합에 널리 활용되는 대표적인 영상분해 기반의 방법론으로, 각각의 원 영상을 다양한 스케일로 분해하여 융합하는 기법이다. 또한, 본 연구는 다중해상도 변환 기법에 haze-guided weight map을 융합한 방법론을 제안하였다. Haze-guided weight map은 SWIR 대역이 연기와 같은 특정 대기입자를 투과하여 지표에 대한 정보를 제공해줄 수 있다는 사전지식에 기반하여 제안된 알고리즘으로 다중해상도로 분해된 두 영상을 융합하는 기준이 되는 가중치 지도로써 활용되었다. 제안된 방법론은 가시광 및 SWIR 대역을 포함하고 있는 고해상도 다중대역 위성영상인 Worldview-3 위성영상을 활용하여 검증되었다. 실험 데이터는 주변 산불로 인해 연기가 발생하여 제한된 가시성을 지닌 연기 지역을 포함하고 있으며, 제안된 방법론의 투과 특성을 검증하기 위해 선정되었다. 제안된 기법에 대한 실험결과는 영상 품질 평가 지표를 활용한 정량평가 및 시각평가를 통해 분석되었으며, 결과분석을 통해 연기 지역에 대한 지표정보를 내포하는 SWIR 대역의 밝은 특징값과 가시광 대역 내의 고해상도 정보가 손실없이 최종 융합 영상에 내포됨을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.