Kim Jun-chul;Lee Young-ran;Shin Sung-woong;Kim Kyung-ok
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2005년도 Proceedings of ISRS 2005
/
pp.641-644
/
2005
This paper introduces an Interactive Feature Extraction (!FE) approach for the registration of satellite imagery by matching extracted point and line features. !FE method contains both point extraction by cross-correlation matching of singular points and line extraction by Hough transform. The purpose of this study is to minimize user's intervention in feature extraction and easily apply the extracted features for image registration. Experiments with these imagery dataset proved the feasibility and the efficiency of the suggested method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권10호
/
pp.3591-3606
/
2014
In this paper, a robust watermarking scheme is proposed that uses the scale-invariant feature transform (SIFT) algorithm in the discrete wavelet transform (DWT) domain. First, the SIFT feature areas are extracted from the original image. Then, one level DWT is applied on the selected SIFT feature areas. The watermark is embedded by modifying the fractional portion of the horizontal or vertical, high-frequency DWT coefficients. In the watermark extracting phase, the embedded watermark can be directly extracted from the watermarked image without requiring the original cover image. The experimental results showed that the proposed scheme obtains the robustness to both signal processing and geometric attacks. Also, the proposed scheme is superior to some previous schemes in terms of watermark robustness and the visual quality of the watermarked image.
In this paper we propose an efficient content-based image retrieval method using the color and wavelet based features. The color features are extracted from color histograms of the global image and the wavelet based features are extracted from the invariant moments of the high-pass band image through the spatial-frequency analysis of the wavelet transform. The proposed algorithm, called color and wavelet features based query(CWBQ), is composed of two-step query operations for efficient image retrieval: the coarse level filtering operation and the fine level matching operation. In the first filtering operation, the color histogram feature is used to filter out the dissimilar images quickly from a large image database. The second matching operation applies the wavelet based feature to the retained set of images to retrieve all relevant images successfully. The experimental results show that the proposed algorithm yields more improved retrieval accuracy with computationally efficiency than the previous methods.
3-D 모델 기반 부호화 시스템에서 특징점 추출과 영상합성에 대하여 연구하였다. 얼굴의 특징점들은 영상처리 기술들과 얼굴에 대한 사전지식을 이용하여 자동적으로 추출된다. 추출된 얼굴의 특징점들을 이용하여 얼굴에 정합된 철선 프레임을 특징점의 움직임에 따라 변형시킨다. 변형된 철선 프레임 위에 초기 정면 영상의 질감을 매핑함으로써 합성영상이 만들어진다. 실험결과, 합성영상은 부자연스러움이 거의 나타나지 않았다.
In this paper, we develop a galaxy image classification method based on hand-crafted features and machine learning techniques. Additionally, we provide an empirical analysis to reveal which combination of the techniques is effective for galaxy image classification. To achieve this, we developed a framework which consists of four modules such as preprocessing, feature extraction, feature post-processing, and classification. Finally, we found that the best technique for galaxy image classification is a method to use a median filter, ORB vector features and a voting classifier based on RBF SVM, random forest and logistic regression. The final method is efficient so we believe that it is applicable to embedded environments.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권2호
/
pp.544-564
/
2022
Underwater images often suffer from color distortion, blurring and low contrast, which is caused by the propagation of light in the underwater environment being affected by the two processes: absorption and scattering. To cope with the poor quality of underwater images, this paper proposes a multiscale fusion underwater image enhancement method based on channel attention mechanism and local binary pattern (LBP). The network consists of three modules: feature aggregation, image reconstruction and LBP enhancement. The feature aggregation module aggregates feature information at different scales of the image, and the image reconstruction module restores the output features to high-quality underwater images. The network also introduces channel attention mechanism to make the network pay more attention to the channels containing important information. The detail information is protected by real-time superposition with feature information. Experimental results demonstrate that the method in this paper produces results with correct colors and complete details, and outperforms existing methods in quantitative metrics.
Under the time-varying temperature, the high-temperature radiation of forgings and the change of reflection characteristics of oxide skin on the surface of forgings lead to the difficulty of obtaining images to truly reflect the geometric characteristics of forgings. It is urgent to study the clear and reliable acquisition method of hot forging feature image under time-varying temperature to meet the requirements of visual measurement of hot geometric parameters of forgings. Based on this, this chapter first puts forward the quality evaluation method of forging feature image, which provides guarantee for the accurate evaluation of feature image quality. Furthermore, the factors that affect the image quality, such as the radiation characteristics of forgings and the photographic characteristics of cameras, are analyzed, and the imaging spectrum which can effectively suppress the radiation intensity of forgings is determined. Finally, aiming at the problem that the quality of image acquisition is difficult to guarantee due to the drastic change of radiation intensity of forgings under time-varying temperature, an image acquisition method based on minimum signal-to-noise ratio (SNR) based laser light intensity adaptation is proposed, which significantly improves the definition of feature light strips in forging images at high temperature, and finally realizes the clear acquisition of feature images of large-scale hot forging under time-varying temperature.
This paper proposes a novel feature extraction method for unsupervised multispectral image segmentation based in one dimensional combined neighborhood differences (1D CND). In contrast with the original CND, which is applied with traditional image, 1D CND is computed on a single pixel with various bands. The proposed algorithm utilizes the sign of differences between bands of the pixel. The difference values are thresholded to form a binary codeword. A binomial factor is assigned to these codeword to form another unique value. These values are then grouped to construct the 1D CND feature image where is used in the unsupervised image segmentation. Various experiments using two LANDSAT multispectral images have been performed to evaluate the segmentation and classification accuracy of the proposed method. The result shows that 1D CND feature outperforms the spectral feature, with average classification accuracy of 87.55% whereas that of spectral feature is 55.81%.
본 논문에서는 얼굴 영역을 자동으로 검출하여 실시간으로 얼굴의 특징 짐을 추적하는 방법을 제안한다. Haar-like feature를 이용하여 얼굴 영역을 자동으로 추출하였으며, 회전에 강건한 KLT 알고리즘을 적용하여 얼굴의 특징 점들을 추출하였다. 그리고 실시간으로 얼굴의 특징점을 추적하기 위해 Lucas-Kanade 특징 추적 알고리즘을 사용하였다. 실험결과를 통하여 회전과 움직임에 강건하게 얼굴 영역을 검출하고 추적되는 것을 확인하였다.
In this paper, we introduce the methodological system design via feature selection using Principal Component Analysis and Particle Swarm Optimization algorithms. The overall methodological system design comes from three kinds of modules such as preprocessing module, feature extraction module, and recognition module. First, Histogram equalization enhance the quality of image by exploiting contrast effect based on the normalized function generated from histogram distribution values of 2D face image. Secondly, PCA extracts feature vectors to be used for face recognition by using eigenvalues and eigenvectors obtained from covariance matrix. Finally the feature selection for face recognition among the entire feature vectors is considered by means of the Particle Swarm Optimization. The optimized Polynomial-based Radial Basis Function Neural Networks are used to evaluate the face recognition performance. This study shows that the proposed methodological system design is effective to the analysis of preferred face recognition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.