• Title/Summary/Keyword: Feature image

Search Result 3,612, Processing Time 0.036 seconds

Panoramic Image Stitching Using Feature Extracting and Matching on Embedded System

  • Lee, June-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.273-278
    • /
    • 2017
  • Recently, one of the areas where research is being actively conducted is the Internet of Things (IoT). The field of using the Internet of Things system is increasing, coupled with a remarkable increase of the use of the camera. However, general cameras used in the Internet of Things have limited viewing angles as compared to those available to the human eye. Also, cameras restrict observation of objects and the performance of observation. Therefore, in this paper, we propose a panoramic image stitching method using feature extraction and matching based on an embedded system. After extracting the feature of the image, the speed of image stitching is improved by reducing the amount of computation using the necessary information so that it can be used in the embedded system. Experimental results show that it is possible to improve the speed of feature matching and panoramic image stitching while generating a smooth image.

Depth Image Based Feature Detection Method Using Hybrid Filter (융합형 필터를 이용한 깊이 영상 기반 특징점 검출 기법)

  • Jeon, Yong-Tae;Lee, Hyun;Choi, Jae-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.6
    • /
    • pp.395-403
    • /
    • 2017
  • Image processing for object detection and identification has been studied for supply chain management application with various approaches. Among them, feature pointed detection algorithm is used to track an object or to recognize a position in automated supply chain systems and a depth image based feature point detection is recently highlighted in the application. The result of feature point detection is easily influenced by image noise. Also, the depth image has noise itself and it also affects to the accuracy of the detection results. In order to solve these problems, we propose a novel hybrid filtering mechanism for depth image based feature point detection, it shows better performance compared with conventional hybrid filtering mechanism.

Comparison of Feature Selection Processes for Image Retrieval Applications

  • Choi, Young-Mee;Choo, Moon-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1544-1548
    • /
    • 2011
  • A process of choosing a subset of original features, so called feature selection, is considered as a crucial preprocessing step to image processing applications. There are already large pools of techniques developed for machine learning and data mining fields. In this paper, basically two methods, non-feature selection and feature selection, are investigated to compare their predictive effectiveness of classification. Color co-occurrence feature is used for defining image features. Standard Sequential Forward Selection algorithm are used for feature selection to identify relevant features and redundancy among relevant features. Four color spaces, RGB, YCbCr, HSV, and Gaussian space are considered for computing color co-occurrence features. Gray-level image feature is also considered for the performance comparison reasons. The experimental results are presented.

Laver Farm Feature Extraction From Landsat ETM+ Using Independent Component Analysis

  • Han J. G.;Yeon Y. K.;Chi K. H.;Hwang J. H.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.359-362
    • /
    • 2004
  • In multi-dimensional image, ICA-based feature extraction algorithm, which is proposed in this paper, is for the purpose of detecting target feature about pixel assumed as a linear mixed spectrum sphere, which is consisted of each different type of material object (target feature and background feature) in spectrum sphere of reflectance of each pixel. Landsat ETM+ satellite image is consisted of multi-dimensional data structure and, there is target feature, which is purposed to extract and various background image is mixed. In this paper, in order to eliminate background features (tidal flat, seawater and etc) around target feature (laver farm) effectively, pixel spectrum sphere of target feature is projected onto the orthogonal spectrum sphere of background feature. The rest amount of spectrum sphere of target feature in the pixel can be presumed to remove spectrum sphere of background feature. In order to make sure the excellence of feature extraction method based on ICA, which is proposed in this paper, laver farm feature extraction from Landsat ETM+ satellite image is applied. Also, In the side of feature extraction accuracy and the noise level, which is still remaining not to remove after feature extraction, we have conducted a comparing test with traditionally most popular method, maximum-likelihood. As a consequence, the proposed method from this paper can effectively eliminate background features around mixed spectrum sphere to extract target feature. So, we found that it had excellent detection efficiency.

  • PDF

Electronic Image Stabilization for Portable Thermal Image Camera (휴대용 열 영상 관측 장비를 위한 전자적 영상 안정화)

  • Kim, Jong-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.288-293
    • /
    • 2016
  • Electronic Image Stabilization(EIS) is widely used as a technique for correcting a shake of an image. The case requiring the EIS function has been increased in high magnification thermal image observation on portable military equipment. Projection Algorithm(PA) for EIS is easy to implement but its performance is sensitive to the projection area. Especially, projection profiles of thermal image have very modest change and are difficult to extract image shifts between frames. In this paper, we proposed algorithm to extract a feature image for the thermal image and compared Block Matching Algorithm(BMA) with PA using our proposed feature image. When using our proposed feature image, BMA was simply implemented using FPGA's internal small memory. And we were able to obtain 30 % PSNR improved results compared to PA.

Image Retrieval Based on the Weighted and Regional Integration of CNN Features

  • Liao, Kaiyang;Fan, Bing;Zheng, Yuanlin;Lin, Guangfeng;Cao, Congjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.894-907
    • /
    • 2022
  • The features extracted by convolutional neural networks are more descriptive of images than traditional features, and their convolutional layers are more suitable for retrieving images than are fully connected layers. The convolutional layer features will consume considerable time and memory if used directly to match an image. Therefore, this paper proposes a feature weighting and region integration method for convolutional layer features to form global feature vectors and subsequently use them for image matching. First, the 3D feature of the last convolutional layer is extracted, and the convolutional feature is subsequently weighted again to highlight the edge information and position information of the image. Next, we integrate several regional eigenvectors that are processed by sliding windows into a global eigenvector. Finally, the initial ranking of the retrieval is obtained by measuring the similarity of the query image and the test image using the cosine distance, and the final mean Average Precision (mAP) is obtained by using the extended query method for rearrangement. We conduct experiments using the Oxford5k and Paris6k datasets and their extended datasets, Paris106k and Oxford105k. These experimental results indicate that the global feature extracted by the new method can better describe an image.

CNN-based Opti-Acoustic Transformation for Underwater Feature Matching (수중에서의 특징점 매칭을 위한 CNN기반 Opti-Acoustic변환)

  • Jang, Hyesu;Lee, Yeongjun;Kim, Giseop;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • In this paper, we introduce the methodology that utilizes deep learning-based front-end to enhance underwater feature matching. Both optical camera and sonar are widely applicable sensors in underwater research, however, each sensor has its own weaknesses, such as light condition and turbidity for the optic camera, and noise for sonar. To overcome the problems, we proposed the opti-acoustic transformation method. Since feature detection in sonar image is challenging, we converted the sonar image to an optic style image. Maintaining the main contents in the sonar image, CNN-based style transfer method changed the style of the image that facilitates feature detection. Finally, we verified our result using cosine similarity comparison and feature matching against the original optic image.

3D FACE RECONSTRUCTION FROM ROTATIONAL MOTION

  • Sugaya, Yoshiko;Ando, Shingo;Suzuki, Akira;Koike, Hideki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.714-718
    • /
    • 2009
  • 3D reconstruction of a human face from an image sequence remains an important problem in computer vision. We propose a method, based on a factorization algorithm, that reconstructs a 3D face model from short image sequences exhibiting rotational motion. Factorization algorithms can recover structure and motion simultaneously from one image sequence, but they usually require that all feature points be well tracked. Under rotational motion, however, feature tracking often fails due to occlusion and frame out of features. Additionally, the paucity of images may make feature tracking more difficult or decrease reconstruction accuracy. The proposed 3D reconstruction approach can handle short image sequences exhibiting rotational motion wherein feature points are likely to be missing. We implement the proposal as a reconstruction method; it employs image sequence division and a feature tracking method that uses Active Appearance Models to avoid the failure of feature tracking. Experiments conducted on an image sequence of a human face demonstrate the effectiveness of the proposed method.

  • PDF

Evaluating the Contribution of Spectral Features to Image Classification Using Class Separability

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.55-65
    • /
    • 2020
  • Image classification needs the spectral similarity comparison between spectral features of each pixel and the representative spectral features of each class. The spectral similarity is obtained by computing the spectral feature vector distance between the pixel and the class. Each spectral feature contributes differently in the image classification depending on the class separability of the spectral feature, which is computed using a suitable vector distance measure such as the Bhattacharyya distance. We propose a method to determine the weight value of each spectral feature in the computation of feature vector distance for the similarity measurement. The weight value is determined by the ratio between each feature separability value to the total separability values of all the spectral features. We created ten spectral features consisting of seven bands of Landsat-8 OLI image and three indices, NDVI, NDWI and NDBI. For three experimental test sites, we obtained the overall accuracies between 95.0% and 97.5% and the kappa coefficients between 90.43% and 94.47%.

Comparative Analysis of Detection Algorithms for Corner and Blob Features in Image Processing

  • Xiong, Xing;Choi, Byung-Jae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.4
    • /
    • pp.284-290
    • /
    • 2013
  • Feature detection is very important to image processing area. In this paper we compare and analyze some characteristics of image processing algorithms for corner and blob feature detection. We also analyze the simulation results through image matching process. We show that how these algorithms work and how fast they execute. The simulation results are shown for helping us to select an algorithm or several algorithms extracting corner and blob feature.