• 제목/요약/키워드: Feature extraction

검색결과 2,586건 처리시간 0.035초

Airborne MSS 자료를 이용한 수질인자의 분광특성 분석 (The Analysis of Spectral characteristics of Water Quality Factors Uisng Airborne MSS Data)

  • Dong-Ho Jang;Gi-Ho Jo;Kwang-Hoon Chi
    • 대한원격탐사학회지
    • /
    • 제14권3호
    • /
    • pp.296-306
    • /
    • 1998
  • Airborne MSS 자료는 수질오염을 효과적으로 감시하고 분석할 수 있는 자료이다. 본 연구에서는 다목적 실용위성(KOMPSAT)에 탑재될 저해상도카메라(LRC)의 다중분광 영상자료를 수질오염 분석에 활용할 목적으로 수질인자의 분광반사도를 측정하였으며, 고해상도 원격탐사 자료인 Airborne MSS 자료를 이용하여 수역에서의 수질인자 추출 가능성을 조사하였다. 특히 부영양화와 관련된 환경인자 추출을 시도하였다. 수질인자는 클로로필-a, 부유물질, 탁도 등을 선정하여 분광반사 특성 및 처리기법을 개발하였다. 그 결과는 다음과 같다 첫째, 수면에 도달하는 태양광 스펙트럼은 가시광 영역인 0.4~0.7$\mu\textrm{m}$에서 전체 복사량의 50% 정도가 반사되며, 0.50$\mu\textrm{m}$ 부근에서 가장 높다. 둘째, 클로로필-a는 녹색 파장대인 0.52$\mu\textrm{m}$, 부유물질의 반사도는 0.8$\mu\textrm{m}$, 탁도는 0.57$\mu\textrm{m}$에서 높은 반사율을 보였다. 셋째, Airborne MSS자료를 이용하여 수질인자 분석결과, 클로로필-a는 Band 3과 Band 7을 비연산처리를 하여 분포도를 작성하였다. 부유물질은 Band 7에서 분포도를 작성할 수 있었으며, PCA를 수행하였을 때 PC 1에서 유용함을 알 수 있었다. 탁도는 PCA 분석시 PC 4에서 현장자료와 유사한 분포패턴을 나타내었다. 이상의 결과들은 계절적, 시간적 변화에 따라 파장대역이 달라질 수 있으므로, LRC 자료를 이용하여 보다 정확한 수질환경 인자를 분석하기 위해서는 현장실측 자료 및 수역의 분광반사 특성 등을 지속적으로 조사할 필요가 있다. 추후 본 연구에서는 저해상도 위성영상 및 현장 분광반사도 측정을 통한 수역의 분광반사 특성을 지속적으로 분석하고, 수역의 수질분석자료 확보 및 수질오염 유형을 분석 할 것이다.

확률적 퍼지 룰 기반 학습에 의한 개인화된 미디어 제어 방법 (Personalized Media Control Method using Probabilistic Fuzzy Rule-based Learning)

  • 이형욱;김용휘;이태엽;박광현;김용수;조준면;변증남
    • 한국지능시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.244-251
    • /
    • 2007
  • 사용자 의도 파악(intention reading) 기술은 스마트 홈과 같은 복잡한 유비쿼터스(ubiquitous) 환경에서 사용자에게 보다 편리하고 개인화된(personalized) 서비스 제공이 가능하도록 해준다. 또한 학습 기능(learning capability)은 지식 발견(knowledge discovery)의 관점에서 의도 파악 기술의 핵심 요소 기술의 하나로 자리 매김하고 있다 이 논문에서는 스마트 홈(smart home) 환경에서 제공 가능한 개인화된 서비스 중의 하나로, 개인화된 미디어 제어 방법에 대한 내용을 다룬다. 특히, 사람의 행동 패턴과 같은 데이터는 패턴 분류의 관점에서 구분해야 할 클래스(class)에 비해 입력 정보가 불충분한 경우가 많아서 비일관적인(inconsistent) 데이터가 많으므로, 퍼지 논리(fuzzy logic)와 확률 (probability)의 개념을 효과적으로 병행해야 의미 있는 지식을 추출해 낼 수 있다. 이를 위하여 반복 퍼지 지도 클러스터링(IFCS; Iterative Fuzzy Clustering with Supervision) 알고리즘에 기반하여 주어진 데이터 패턴으로부터 확률적 퍼지 룰(probabilistic fuzzy rule)을 얻어 내는 방법에 대해 설명한다. 또한 이를 이용한 다양한 학습 제어 구조를 바탕으로 개인화된 미디어 서비스를 추천해 줄 수 있는 방법에 대해서 설명하도록 하고, 실험 결과를 통해 제안된 시스템의 효용성을 보이도록 한다.

시각정보획득과정에 나타난 주사판정과 성별 주시특성 - 지하철 홀 공간을 대상으로 - (Scanning Determination & Observation Features by Sex shown in the Process of Acquiring Visual Information - With the Object of Subway Station Hall Space -)

  • 김종하;최계영
    • 한국실내디자인학회논문집
    • /
    • 제23권6호
    • /
    • pp.115-124
    • /
    • 2014
  • This study has carried out scanning tests in order to figure out the features of scanning search by sex of space users, with the result of which the validity of data has been estimated. In this research, the scanning patterns were set up for verifying the typology of scanning paths and then the reason for determining scanning paths and the validity of estimation method were reviewed. Since the observation features depends on sex, the analysis of visual activities for acquiring any information in a space will reveal the intention and purpose of space users. The findings by analyzing the features of scanning pattern by sex which were found at the determination of scanning patterns can be defined as the followings. First, for estimating the process of space-information search, the movement distance at each point of continuative-observation data from the angle of eye-movement has been extracted, on the ground of which the fixation and movement of eye have been defined for the establishment of scanning-cut characteristics. Second, the scanning times were estimated for the extraction of effective observation data that would be used for comparative analysis, which showed that men had more data (3,398.2/64.4%) than women (2,998.2/55.6%). This enables the acknowledgment that the scanning cut of men was relatively less, which indicates that men will acquire more information on space than women in the process of observing any space. Third, men's scanning times (58.0 times/2.02 seconds) were less than those of women (71.9 times/1.39 seconds) while the scanning time of the former was longer than that of the latter, which shows the feature that it takes longer for men than women in scanning while the scanning times of the former is less than those of the latter. Fourth, the observation features can be determined that the combination of this result with the predominance character by sex for a general viewpoint to be employed indicates that while men employ mixed-scanning for observation activities to acquire space-information spending for longer time, women, by concentrated-scanning, focus on a single point for shorter time or stay at one location for a considerably long time for space-information acquirement.

머신러닝 플랫폼을 활용한 소프트웨어 교수-학습 모형 개발 (The Development of Software Teaching-Learning Model based on Machine Learning Platform)

  • 박대륜;안중민;장준혁;유원진;김우열;배영권;유인환
    • 정보교육학회논문지
    • /
    • 제24권1호
    • /
    • pp.49-57
    • /
    • 2020
  • 현대사회는 21세기 초반 지식정보사회를 지나 지능정보사회로 바뀌어 가고 있다. 본 연구에서는 지능정보사회에서 요구되는 학습자의 핵심역량을 신장시키기 위하여 인공지능의 한 분야인 머신러닝을 기반으로 소프트웨어 교육 교수-학습 모형을 개발하였다. 본 모형은 인공지능 자체에 대한 학습의 부담감을 줄이고, 머신러닝을 활용하여 문제를 해결하는 과정에서 핵심역량을 신장시키는 것에 중점을 두었다. 개발된 모형의 구체적인 단계는 문제인식 및 분석, 데이터 수집, 데이터 가공 및 선별, ML모델 훈련 및 평가, ML프로그래밍, 적용 및 해결, 공유 및 환류의 7단계로 구성되어 있다. 본 연구에서 개발한 모형을 학생과 학부모를 대상으로 적용한 결과 긍정적인 반응을 얻을 수 있었으며, 이를 통해 머신러닝 기반의 소프트웨어 교육 프로그램의 개발 및 운영에 작은 밑거름을 제시할 수 있을 것으로 기대한다.

비선형 피부색 변화 모델을 이용한 실감적인 표정 합성 (Synthesis of Realistic Facial Expression using a Nonlinear Model for Skin Color Change)

  • 이정호;박현;문영식
    • 전자공학회논문지CI
    • /
    • 제43권3호
    • /
    • pp.67-75
    • /
    • 2006
  • 얼굴의 표정은 얼굴의 구성요소같은 기하학적 정보와 조명이나 주름 같은 세부적인 정보들로 표현된다. 얼굴 표정은 기하학적 변형만으로는 실감적인 표정을 생성하기 힘들기 때문에 기하학적 변형과 더불어 텍스처 같은 세부적인 정보도 함께 변형해야만 실감적인 표현을 할 수 있다. 표정비율이미지 (Expression Ratio Image)같은 얼굴 텍스처의 세부적인 정보를 변형하기 위한 기존 방법들은 조명에 따른 피부색의 변화를 정확히 표현할 수 없는 단점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 서로 다른 조명 조건에서도 실감적인 표정 텍스처 정보를 적용할 수 있는 비선형 피부색 모델 기반의 표정 합성방법을 제안한다. 제안된 방법은 동적 외양 모델을 이용한 자동적인 얼굴 특징 추출과 와핑을 통한 표정 변형 단계, 비선형 피부색 변화 모델을 이용한 표정 생성 단계, 유클리디 거리 변환 (Euclidean Distance Transform)에 의해 계산된 혼합 비율을 사용한 원본 얼굴 영상과 생성된 표정의 합성 등 총 3 단계로 구성된다. 실험결과는 제안된 방법이 다양한 조명조건에서도 자연스럽고 실감적인 표정을 표현한다는 것을 보인다.

얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식 (Recognition method using stereo images-based 3D information for improvement of face recognition)

  • 박장한;백준기
    • 전자공학회논문지CI
    • /
    • 제43권3호
    • /
    • pp.30-38
    • /
    • 2006
  • 본 논문에서는 스테레오 얼굴영상으로부터 3차원 정보인 거리와 깊이 정보를 이용해 거리에 따라 얼굴인식률이 떨어지는 것을 개선하였다. 단안 영상은 객체의 거리, 크기, 이동, 회전, 깊이 등의 불확실한 정보로 인해 인식률이 떨어지는 문제점이 있다. 또한 얼굴의 회전, 조명, 표정변화 등의 영상정보가 취득되지 않으면 인식률이 매우 저하되는 단점이 있다. 그래서 본 연구는 이와 같은 문제점을 해결하고자 한다. 제안된 방법은 눈 검출 알고리듬, 얼굴의 회전 방향분석, PCA(Principal Component Analysis)로 구성된다. 또한 제한된 영역에서 얼굴을 고속으로 검출하기 위해 RGB컬러공간에서 YCbCr공간으로 변환한다. 얼굴후보 영역에서 다층 상대적인 밝기 맵을 생성하여 얼굴의 기하학적인 구조로부터 얼굴인지를 판별한다. 스테레오 얼굴영상으로부터 거리 및 눈과 입의 깊이 정보를 취득하고, 거리에 따라 확대, 축소, 이동, 회전 등의 정규화를 통해 $92{\times}112$ 크기의 얼굴을 검출한다. 검출된 왼쪽 얼굴영상과 추정된 방향의 차를 PCA로 학습한다. 제안된 방법은 정면에서 최대 95.8%(100cm), 포즈변화에 따라 98.3%의 인식률을 얻을 수 있었다. 따라서 실험을 통하여 제안된 방법은 거리에 따라 확대, 축소와 회전 등의 정확한 정규화로 높은 인식률을 얻을 수 있음을 보였다.

EIS 기반 전압신호 분석을 통한 당뇨병 진단 가능성 평가 (Diagnosis of Diabetes Using Voltage Analysis Based on EIS (Electro Interstitial Scan))

  • 배장한;김수찬;카니티카 케오칸네트;전민호;김재욱
    • 전자공학회논문지
    • /
    • 제53권11호
    • /
    • pp.114-122
    • /
    • 2016
  • EIS (Electro interstitial scan, 전기체간스캔법)는 전극을 이용해 미세전류를 인체에 인가하고 그에 따른 전기적 반응을 분석하여 생리적인 정보를 얻는 방법으로, 비침습적이고 간단한 검사가 가능하다는 장점이 있다. 특히 당뇨병 진단을 위한 스크린용으로 적합하다는 연구들이 진행되어 왔으나 대부분 진단 원리에 대한 구체적인 논의가 이루어지지 않았다. 본 연구에서는 EIS 방법이 당뇨병 스크리닝 및 임상에 유용하게 활용될 수 있을지 분석해 보기위해 당뇨병 환자와 정상인을 대상으로 EIS 장비의 원 신호인 전압 변동 데이터를 특정경로에서 측정하였다. 전압 신호의 특징점을 추출하고 두 그룹 사이의 AUC (Area under the curve)를 계산한 결과 7개의 변수들이 60% 이상의 분류 정확도를 보였다. 또한 이 변수들을 k-NN 분류기로 학습한 결과, 왼쪽 손에서의 전압 변동 크기를 기준으로 분석했을 때 분류 정확도를 76.2%까지 높일 수 있었다. EIS 기반의 전압신호 분석법으로 비침습적인 당뇨병 스크리닝의 가능성을 보였다.

선형모델을 이용한 방향성 조명하의 얼굴영상 정규화 (Normalization of Face Images Subject to Directional Illumination using Linear Model)

  • 고재필;김은주;변혜란
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권1호
    • /
    • pp.54-60
    • /
    • 2004
  • 얼굴인식은 외관기반(appearance-based) 매칭기법으로 풀어야 할 문제 중의 하나이다. 그러나, 얼굴영상의 외관은 조명 변화에 매우 민감하다. 얼굴인식 성능을 향상시키기 위해서는 다양한 조명 아래에서 다양한 학습 데이타를 수집해야 하나, 실제로는 데이타 수집이 용이하지 않다. 따라서, 성능향상을 위해서 다양한 데이타를 학습시키는 것 보다 다양한 조건의 데이타를 정규화 하는 기법에 주목하는 것이 바람직하다. 본 논문에서는 방향성 조명 아래에서 취득한 얼굴영상을 정규화 할 수 있는 간단한 방법을 제안한다. 조명 문제는 얼굴인식 시스템에서 오류를 일으키는 가장 중요한 요인중 하나이다. 제안하는 방법을 ICR(illumination Compensation based on Multiple Linear Regression)이라 명명하였다. 본 방법에서는 다중회귀분석 모델을 사용하여 얼굴영상의 화소 밝기 갈 분포에 가장 잘 맞는 평면을 찾은 후 이 평면을 이용하여 얼굴영상을 정규화 한다. 제안하는 방법의 장점은 간단하고 실용적이며, 얼굴영상의 밝기 값 분포에 대한 평면 근사가 선형모델에 의해 수학적으로 정의된다는 점이다. 얼굴인식에서 제안하는 방법의 성능 향상을 보여주기 위해 공개 및 자체 구축 데이타 베이스에 대한 실험 결과를 제시한다. 실험 결과 두드러진 얼굴인식 성능 향상을 보여주었다.

모멘트 정보와 표면거리 기반 다중 모달리티 의료영상 정합 (Multi-modality MEdical Image Registration based on Moment Information and Surface Distance)

  • 최유주;김민정;박지영;윤현주;정명진;홍승봉;김명희
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권3_4호
    • /
    • pp.224-238
    • /
    • 2004
  • 다중 모달리티 영상정합은 서로 다른 성격의 두 영상의 중요정보를 결합하여 복합적 정보를 얻기 위해 널리 사용되는 영상처리 기법이다. 본 연구에서는 정합 대상 객체의 초기위치 및 방향에 종속적이지 않고, 낮은 정합오차 범위 내에서의 안정적인 정합을 지원하기 위하여 기존의 표면기반 정합 기법을 개선한 모멘트 정보 및 표면거리 기반의 정합 기법을 제시한다. 제안방법에서는 우선 정합대상객체의 표면 윤곽 점을 추출하고, 이를 기반으로 대상객체의 모멘트 정보를 추출하여, 표면거리 기반 상세 정합 이전에 모멘트 정보를 일치시키는 변환을 수행함으로써, 정합이전 대상객체의 위치 및 방향이 상이한 경우에 있어서도 정합이 안정적으로 수행되도록 한다. 또한 테스트 영상에 대한 표면 대표점 추출 시, 표면 코너추출법을 적용함으로써, 기존 표면 정보 기반 정합기법에서 일반적으로 사용하고 있는 무작위 샘플링 및 일정간격 샘플링에 의한 취약점을 보완한다. 본 논문에서 제안기법의 검증을 위하여 뇌 부위 자기공명단층영상(MRI)과 양자 방출 단층 촬영 영상(PET)을 적용하고, 정합오류율과 정합결과에 대한 2,3차원 가시화 영상의 육안평가를 통하여 정확성 및 안정성 측면을 검증한다.

점진적 EM 알고리즘에 의한 잠재토픽모델의 학습 속도 향상 (Accelerated Loarning of Latent Topic Models by Incremental EM Algorithm)

  • 장정호;이종우;엄재홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권12호
    • /
    • pp.1045-1055
    • /
    • 2007
  • 잠재토픽모델(latent topic model)은 데이타에 내재된 특징적 패턴이나 데이타 정의 자질들 간의 상호 관련성을 확률적으로 모델링하고 자동 추출하는 모델로서 최근 텍스트 문서로부터의 의미 자질 자동 추출, 이미지를 비롯한 멀티미디어 데이타 분석, 생물정보학 분야 등에서 많이 응용되고 있다. 이러한 잠재토픽모델의 대규모 데이타에 대한 적용 시 그 효과 증대를 위한 중요한 이슈 중의 하나는 모델의 효율적 학습에 관한 것이다. 본 논문에서는 대표적 잠재토픽모델 중의 하나인 PLSA (probabilistic latent semantic analysis) 기법을 대상으로 점진적 EM 알고리즘을 활용한, 기본 EM 알고리즘 기반의 기존 학습에 대한 학습속도 증진 기법을 제안한다. 점진적 EM 알고리즘은 토픽 추론 시 전체 데이타에 대한 일괄적 E-step 대신에 일부 데이타에 대한 일련의 부분적 E-step을 수행하는 특징이 있으며 이전 데이터 일부에 대한 학습 결과를 바로 다음 데이타 학습에 반영함으로써 모델 학습의 가속화를 기대할 수 있다. 또한 이론적인 측면에서 지역해로의 수렴성이 보장되고 기존 알고리즘의 큰 수정 없이 구현이 용이하다는 장점이 있다. 논문에서는 해당 알고리즘의 기본적인 응용과 더불어 실제 적용과정 상에서의 가능한 데이터 분할법들을 제시하고 모델 학습 속도 개선 면에서의 성능을 실험적으로 비교 분석한다. 실세계 뉴스 문서 데이타에 대한 실험을 통해, 제안하는 기법이 기존 PLSA 학습 기법에 비해 유의미한 수준에서 학습 속도 증진을 달성할 수 있음을 보이며 추가적으로 모델의 병렬 학습 기법과의 조합을 통한 실험 결과를 간략히 제시한다.