• 제목/요약/키워드: Feature engineering

검색결과 5,860건 처리시간 0.033초

얼굴 특징점 자동 추출 오류에 강인한 3차원 얼굴 복원 방법 (A 3D Face Reconstruction Method Robust to Errors of Automatic Facial Feature Point Extraction)

  • 이연주;이성주;박강령;김재희
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.122-131
    • /
    • 2011
  • 최근에 널리 사용되고 있는 단일 영상 기반의 3차원 얼굴 복원 방법인 변형 가능한 3차원 얼굴 형상 모델(3D morphable shape model)은 입력 영상으로부터 2차원 얼굴 특징점들을 정확하게 추출할 경우, 입력 얼굴과 유사한 3차원 얼굴 형상을 생성할 수 있다. 그러나 실시간 3차원 얼굴 복원 시스템과 같이 사용자의 협조가 불가능한 경우에는 자동으로 얼굴 특징점들을 추출해야 하기 때문에, 특징점 추출 오류가 발생하여 정확한 3차원 얼굴 형상을 생성하기 어려운 문제가 있다. 이러한 문제를 해결하기 위해서, 본 논문에서는 특징점 추출 시 오추출 특징점과 정추출 특징점을 자동으로 분류하고, 정추출 특징점들만을 이용하여 3차원 얼굴을 복원하는 방법을 제안하였다. 실험결과에서는 특징점 자동 추출 오류를 고려하지 않은 기존 방법과 비교한 결과, 제안방법의 3차원 얼굴 복원 성능이 크게 향상되었음을 확인하였다.

특징형상기반 다중해상도 모델링에 관한 연구 - Part II: 시스템 구현 및 상세수준 판단기준 (A Study on Feature-Based Multi-Resolution Modelling - Part II: System Implementation and Criteria for Level of Detail)

  • 이규열;이상헌
    • 한국CDE학회논문집
    • /
    • 제10권6호
    • /
    • pp.444-454
    • /
    • 2005
  • Recently, the requirements of multi-resolution models of a solid model, which represent an object at multiple levels of feature detail, are increasing for engineering tasks such as analysis, network-based collaborative design, and virtual prototyping and manufacturing. The research on this area has focused on several topics: topological frameworks for representing multi-resolution solid models, criteria for the level of detail (LOD), and generation of valid models after rearrangement of features. As a solution to the feature rearrangement problem, the new concept of the effective zone of a feature is introduced in the former part of the paper. In this paper, we propose a feature-based non-manifold modeling system to provide multi-resolution models of a feature-based solid or non-manifold model on the basis of the effective feature zones. To facilitate the implementation, we introduce the class of the multi-resolution feature whose attributes contain all necessary information to build a multi-resolution solid model and extract LOD models from it. In addition, two methods are introduced to accelerate the extraction of LOD models from the multi-resolution modeling database: the one is using an NMT model, known as a merged set, to represent multi-resolution models, and the other is storing differences between adjacent LOD models to accelerate the transition to the other LOD. We also suggest the volume of the feature, regardless of feature type, as a criterion for the LOD. This criterion can be used in a wide range of applications, since there is no distinction between additive and subtractive features unlike the previous method.

전방 모노카메라 기반 SLAM 을 위한 다양한 특징점 초기화 알고리즘의 성능 시뮬레이션 (Performance Simulation of Various Feature-Initialization Algorithms for Forward-Viewing Mono-Camera-Based SLAM)

  • 이훈;김철홍;이태재;조동일
    • 제어로봇시스템학회논문지
    • /
    • 제22권10호
    • /
    • pp.833-838
    • /
    • 2016
  • This paper presents a performance evaluation of various feature-initialization algorithms for forward-viewing mono-camera based simultaneous localization and mapping (SLAM), specifically in indoor environments. For mono-camera based SLAM, the position of feature points cannot be known from a single view; therefore, it should be estimated from a feature initialization method using multiple viewpoint measurements. The accuracy of the feature initialization method directly affects the accuracy of the SLAM system. In this study, four different feature initialization algorithms are evaluated in simulations, including linear triangulation; depth parameterized, linear triangulation; weighted nearest point triangulation; and particle filter based depth estimation algorithms. In the simulation, the virtual feature positions are estimated when the virtual robot, containing a virtual forward-viewing mono-camera, moves forward. The results show that the linear triangulation method provides the best results in terms of feature-position estimation accuracy and computational speed.

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

Multiple Vehicle Detection and Tracking in Highway Traffic Surveillance Video Based on SIFT Feature Matching

  • Mu, Kenan;Hui, Fei;Zhao, Xiangmo
    • Journal of Information Processing Systems
    • /
    • 제12권2호
    • /
    • pp.183-195
    • /
    • 2016
  • This paper presents a complete method for vehicle detection and tracking in a fixed setting based on computer vision. Vehicle detection is performed based on Scale Invariant Feature Transform (SIFT) feature matching. With SIFT feature detection and matching, the geometrical relations between the two images is estimated. Then, the previous image is aligned with the current image so that moving vehicles can be detected by analyzing the difference image of the two aligned images. Vehicle tracking is also performed based on SIFT feature matching. For the decreasing of time consumption and maintaining higher tracking accuracy, the detected candidate vehicle in the current image is matched with the vehicle sample in the tracking sample set, which contains all of the detected vehicles in previous images. Most remarkably, the management of vehicle entries and exits is realized based on SIFT feature matching with an efficient update mechanism of the tracking sample set. This entire method is proposed for highway traffic environment where there are no non-automotive vehicles or pedestrians, as these would interfere with the results.

Emotion recognition from speech using Gammatone auditory filterbank

  • 레바부이;이영구;이승룡
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.

음각 정보를 이용한 딥러닝 기반의 알약 식별 알고리즘 연구 (Pill Identification Algorithm Based on Deep Learning Using Imprinted Text Feature)

  • 이선민;김영재;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.441-447
    • /
    • 2022
  • In this paper, we propose a pill identification model using engraved text feature and image feature such as shape and color, and compare it with an identification model that does not use engraved text feature to verify the possibility of improving identification performance by improving recognition rate of the engraved text. The data consisted of 100 classes and used 10 images per class. The engraved text feature was acquired through Keras OCR based on deep learning and 1D CNN, and the image feature was acquired through 2D CNN. According to the identification results, the accuracy of the text recognition model was 90%. The accuracy of the comparative model and the proposed model was 91.9% and 97.6%. The accuracy, precision, recall, and F1-score of the proposed model were better than those of the comparative model in terms of statistical significance. As a result, we confirmed that the expansion of the range of feature improved the performance of the identification model.

악성 URL 탐지를 위한 URL Lexical Feature 기반의 DL-ML Fusion Hybrid 모델 (DL-ML Fusion Hybrid Model for Malicious Web Site URL Detection Based on URL Lexical Features)

  • 김대엽
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.881-891
    • /
    • 2023
  • 최근에는 인공지능을 활용하여 악성 URL을 탐지하는 다양한 연구가 진행되고 있으며, 대부분의 연구 결과에서 높은 탐지 성능을 보였다. 그러나 고전 머신러닝을 활용하는 경우 feature를 분석하고 선별해야 하는 추가 비용이 발생하며, 데이터 분석가의 역량에 따라 탐지 성능이 결정되는 이슈가 있다. 본 논문에서는 이러한 이슈를 해결하기 위해 URL lexical feature를 자동으로 추출하는 딥러닝 모델의 일부가 고전 머신러닝 모델에 결합된 형태인 DL-ML Fusion Hybrid 모델을 제안한다. 제안한 모델로 직접 수집한 총 6만 개의 악성과 정상 URL을 학습한 결과 탐지 성능이 최대 23.98%p 향상되었을 뿐만 아니라, 자동화된 feature engineering을 통해 효율적인 기계학습이 가능하였다.

온톨로지를 이용한 Feature - OWL 모델 변환기법 (A method of Feature - OWL Transformation using Ontology)

  • 김동리;송치양;백두권
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.249-252
    • /
    • 2008
  • 소프트웨어 제품 개발에 있어서 생산성 증가와 비용 절감을 위해 기존 생성된 산출물의 재사용이 중요시 되고 있다. 이 재사용의 초점은 소스 코드의 재사용에서, 설계의 재사용, 도메인 공학에 초점을 둔 재사용으로 발전 되어 왔고, 재사용 자원을 만들기 위한 도메인 분석방법에 대한 연구가 이루어지고 있다. 현재 유사한 도메인에 대한 온톨로지 기반 feature 공통성과 가변성 분석 기법에 대한 연구가 있으나, feature 와 온톨로지에 대한 메타모델 차원의 명확한 분석과 모델들간의 매핑 프로파일이 없어서 일관성 있는 변환을 저해하고 있다. 본 논문에서는 메타모델 차원에서 온톨로지를 이용한 feature 모델과 OWL 간의 변환 방법을 제시한다. 이를 위해 feature 와 OWL 에 대한 메타모델을 정의하고, 이 속성들에 기반하여 feature 모델과 OWL 간 변환 프로파일과 알고리즘을 생성한다. 그리고 제시한 변환 규칙을 이용하여 전자결재 시스템을 통해 실제 적용함으로써 일관성 있는 모델 변환을 보여준다.

CAD 시스템 간의 상호 운용성을 위한 설계 특징형상의 온톨로지 구축 (Building Feature Ontology for CAD System Interoperability)

  • 이윤숙;천상욱;한순흥
    • 한국CDE학회논문집
    • /
    • 제9권2호
    • /
    • pp.167-174
    • /
    • 2004
  • As the networks connect the world, enterprises tend to move manufacturing activities into virtual spaces. Since different applications use different data terminology, it becomes a problem to interoperate, interchange, and manage electronic data among different systems. According to RTI, approximately one billion dollar has been being spent yearly for product data exchange and interoperability. As commercial CAD systems have brought in the concept of design feature for the sake of interoperability, terminologies of design feature need to be harmonized. In order to define design feature terminology for integration, knowledge about feature definitions of different CAD systems should be considered. STEP (Standard for the Exchange of Product model data) have attempted to solve this problem, but it defines only syntactic data representation so that semantic data integration is unattainable. In this paper, we utilize the ontology concept to build a data model of design feature which can be a semantic standard of feature definitions of CAD systems. Using feature ontology, we implement an integrated virtual database and a simple system which searches and edits design features in a semantic way. This paper proposes a methodology for integrating modeling features of CAD systems.