• Title/Summary/Keyword: Feature detection

Search Result 2,251, Processing Time 0.03 seconds

Signal analysis of surface discharge and electromagnetic wave for insulator by kaolin contamination (카올린으로 오손된 애자의 표면방전 및 방사전자파의 신호 분석)

  • Park, Jae-Jun
    • The Journal of Information Technology
    • /
    • v.7 no.3
    • /
    • pp.113-118
    • /
    • 2004
  • Recently, diagnosis techniques have been investigated to detect a partial discharge associated with a dielectric material defect in a high voltage electrical apparatus. However, the properties of detection technique of PD aren't completely understood because the physical process of PD. Therefore, this paper analyzes the process on Surface Discharge of Polymer Insulator using Wavelet transform. Wavelet transform provides a direct quantitative measure of spectral content in the time frequency domain. As it is important to develop a non-contact method for detecting the Contamination Degree, this research analyzes the electromagnetic waves emitted from PD using Wavelet transform. This result experimentally shows the process of PD as a two-dimensional distribution in the time-frequency domain. The method is shown to be useful for detecting prediction of contamination degree.

  • PDF

A Study on Mouth Features Detection in Face using HMM (HMM을 이용한 얼굴에서 입 특징점 검출에 관한 연구)

  • Kim, Hea-Chel;Jung, Chan-Ju;Kwag, Jong-Se;Kim, Mun-Hwan;Bae, Chul-Soo;Ra, Snag-Dong
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.647-650
    • /
    • 2002
  • The human faces do not have distinct features unlike other general objects. In general the features of eyes, nose and mouth which are first recognized when human being see the face are defined. These features have different characteristics depending on different human face. In this paper, We propose a face recognition algorithm using the hidden Markov model(HMM). In the preprocessing stage, we find edges of a face using the locally adaptive threshold scheme and extract features based on generic knowledge of a face, then construct a database with extracted features. In training stage, we generate HMM parameters for each person by using the forward-backward algorithm. In the recognition stage, we apply probability values calculated by the HMM to input data. Then the input face is recognized by the euclidean distance of face feature vector and the cross-correlation between the input image and the database image. Computer simulation shows that the proposed HMM algorithm gives higher recognition rate compared with conventional face recognition algorithms.

  • PDF

Semantic Ontology Speech Recognition Performance Improvement using ERB Filter (ERB 필터를 이용한 시맨틱 온톨로지 음성 인식 성능 향상)

  • Lee, Jong-Sub
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.265-270
    • /
    • 2014
  • Existing speech recognition algorithm have a problem with not distinguish the order of vocabulary, and the voice detection is not the accurate of noise in accordance with recognized environmental changes, and retrieval system, mismatches to user's request are problems because of the various meanings of keywords. In this article, we proposed to event based semantic ontology inference model, and proposed system have a model to extract the speech recognition feature extract using ERB filter. The proposed model was used to evaluate the performance of the train station, train noise. Noise environment of the SNR-10dB, -5dB in the signal was performed to remove the noise. Distortion measure results confirmed the improved performance of 2.17dB, 1.31dB.

A statistical framework with stiffness proportional damage sensitive features for structural health monitoring

  • Balsamo, Luciana;Mukhopadhyay, Suparno;Betti, Raimondo
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.699-715
    • /
    • 2015
  • A modal parameter based damage sensitive feature (DSF) is defined to mimic the relative change in any diagonal element of the stiffness matrix of a model of a structure. The damage assessment is performed in a statistical pattern recognition framework using empirical complementary cumulative distribution functions (ECCDFs) of the DSFs extracted from measured operational vibration response data. Methods are discussed to perform probabilistic structural health assessment with respect to the following questions: (a) "Is there a change in the current state of the structure compared to the baseline state?", (b) "Does the change indicate a localized stiffness reduction or increase?", with the latter representing a situation of retrofitting operations, and (c) "What is the severity of the change in a probabilistic sense?". To identify a range of normal structural variations due to environmental and operational conditions, lower and upper bound ECCDFs are used to define the baseline structural state. Such an approach attempts to decouple "non-damage" related variations from damage induced changes, and account for the unknown environmental/operational conditions of the current state. The damage assessment procedure is discussed using numerical simulations of ambient vibration testing of a bridge deck system, as well as shake table experimental data from a 4-story steel frame.

Fast algorithm for Traffic Sign Recognition (고속 교통표시판 인식 알고리즘)

  • Dajun, Ding;Lee, Chanho
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2012
  • Information technology improves convenience, safety, and performance of automobiles. Recently, a lot of algorithms are studied to provide safety and environment information for driving, and traffic sign recognition is one of them. It can provide important information for safety driving. In this paper, we propose a method for traffic sign detection and identification concentrating on reducing the computation time. First, potential traffic signs are segmented by color threshold, and a polygon approximation algorithm is used to detect appropriate polygons. The potential signs are compared with the template signs in the database using SURF and ORB feature matching method.

POSE-VIWEPOINT ADAPTIVE OBJECT TRACKING VIA ONLINE LEARNING APPROACH

  • Mariappan, Vinayagam;Kim, Hyung-O;Lee, Minwoo;Cho, Juphil;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.20-28
    • /
    • 2015
  • In this paper, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame with posture variation and camera view point adaptation by employing the non-adaptive random projections that preserve the structure of the image feature space of objects. The existing online tracking algorithms update models with features from recent video frames and the numerous issues remain to be addressed despite on the improvement in tracking. The data-dependent adaptive appearance models often encounter the drift problems because the online algorithms does not get the required amount of data for online learning. So, we propose an effective tracking algorithm with an appearance model based on features extracted from a video frame.

Power Swing Detection Using rms Current Measurements

  • Taheri, Behrooz;Razavi, Farzad
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1831-1840
    • /
    • 2018
  • During a power swing, distance relays may mistakenly spread fault throughout the power grid, causing a great deal of damage. In some cases, such mistakes can cause global outages. For this reason, it is critical to make a distinction between power swings and faults in distance relays. In this paper, a new method is proposed based on RMS measurement to differentiate between faults and power swings. The proposed method was tested on two standard grids, demonstrating its capability in detecting a power swing and simultaneous fault with power swing. This method required no specific configurations, and was independent of grid type and zoning type of distance relays. This feature in practice allows the relay to be installed on any grid with any kind of coordination. In protective relays, the calculations applied to the microprocessor is of great importance. Distance relays are constantly calculating the current RMS values for protection purposes. This mitigates the computations in the microprocessor to detect power swings. The proposed method was able to differentiate between a fault and a power swing. Furthermore, it managed to detect faults occurring simultaneously with power swings.

Pupil and Lip Detection using Shape and Weighted Vector based on Shape (형태와 가중치 벡터를 이용한 눈동자와 입술 검출)

  • Jang, kyung-Shik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.5
    • /
    • pp.311-318
    • /
    • 2002
  • In this paper, we propose an efficient method for recognizing pupils and lip in a human face. Pupils are detected by a cost function, which uses features based on the eye's shape and a relation between pupil and eyebrow. The inner boundary of lip is detected by weighted vectors based on lip's shape and on the difference of gray level between lip and face skin. These vectors extract four feature points of lip : the top of the upper lip, the bottom of the lower lip, and the two corners. The experiments have been performed for many images and show very encouraging result.

Removal of the Ambiguity of Images by Normalization and Entropy Minimization and Edge Detection by Understanding of Image Structures (정규화와 엔트로피의 최소화에 의한 영상 경계의 애매성 제거 및 영상 구조 파악에 의한 경계선 추출)

  • Jo, Dong-Uk;Baek, Seung-Jae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2558-2562
    • /
    • 1999
  • This paper proposes on the methods of noise removal and edge extraction which is done by eliminating the ambiguities of the image using normalization and minimizing the entropy. Pre-existing methods have their own peculiarities and limitations, such as gray level distributions change very slowly or two regions which having similar gray level distribution are touched. This affects on the post processing such as feature extraction, as a result, this leads to false-recognition or no-recognition. Therefore, this paper proposes on the methods which overcome these problems. Finally, the effectiveness of this paper is demonstrated by several experiments.

  • PDF

An Improved EEG Signal Classification Using Neural Network with the Consequence of ICA and STFT

  • Sivasankari, K.;Thanushkodi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1060-1071
    • /
    • 2014
  • Signals of the Electroencephalogram (EEG) can reflect the electrical background activity of the brain generated by the cerebral cortex nerve cells. This has been the mostly utilized signal, which helps in effective analysis of brain functions by supervised learning methods. In this paper, an approach for improving the accuracy of EEG signal classification is presented to detect epileptic seizures. Moreover, Independent Component Analysis (ICA) is incorporated as a preprocessing step and Short Time Fourier Transform (STFT) is used for denoising the signal adequately. Feature extraction of EEG signals is accomplished on the basis of three parameters namely, Standard Deviation, Correlation Dimension and Lyapunov Exponents. The Artificial Neural Network (ANN) is trained by incorporating Levenberg-Marquardt(LM) training algorithm into the backpropagation algorithm that results in high classification accuracy. Experimental results reveal that the methodology will improve the clinical service of the EEG recording and also provide better decision making in epileptic seizure detection than the existing techniques. The proposed EEG signal classification using feed forward Backpropagation Neural Network performs better than to the EEG signal classification using Adaptive Neuro Fuzzy Inference System (ANFIS) classifier in terms of accuracy, sensitivity, and specificity.