• Title/Summary/Keyword: Feature descriptor

Search Result 206, Processing Time 0.024 seconds

Motion Flow Analysis using Bi-directional Prediction-Independent Framework in MPEG Compressed Domain (압축 영역에서의 양방향 예측 구조를 이용한 움직임 흐름 분석)

  • 김낙우;김태용;최종수
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.13-22
    • /
    • 2004
  • Because video sequence consists of dynamic objects in nature, the object motion in video is an effective feature in describing the contents of video sequence and motion feature plays an important role in video retrieval. In this paper, we propose a method that converts motion vectors (MVs) to a uniform set on MPEG coded domain, independent of the frame type and the direction of prediction, and utilizes these normalized MVs (N-MVs) as motion descriptor to understand video contents. We describe a frame-type independent representation of the various types of frames presented in an MPEG video in which all frames can be considered equivalently, without full-decoding. In the experiments, we show that the proposed method is better than the conventional one in terms of performance.

Robust 3D Hashing Algorithm Using Key-dependent Block Surface Coefficient (키 기반 블록 표면 계수를 이용한 강인한 3D 모델 해싱)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • With the rapid growth of 3D content industry fields, 3D content-based hashing (or hash function) has been required to apply to authentication, trust and retrieval of 3D content. A content hash can be a random variable for compact representation of content. But 3D content-based hashing has been not researched yet, compared with 2D content-based hashing such as image and video. This paper develops a robust 3D content-based hashing based on key-dependent 3D surface feature. The proposed hashing uses the block surface coefficient using shape coordinate of 3D SSD and curvedness for 3D surface feature and generates a binary hash by a permutation key and a random key. Experimental results verified that the proposed hashing has the robustness against geometry and topology attacks and has the uniqueness of hash in each model and key.

Image recommendation algorithm based on profile using user preference and visual descriptor (사용자 선호도와 시각적 기술자를 이용한 사용자 프로파일 기반 이미지 추천 알고리즘)

  • Kim, Deok-Hwan;Yang, Jun-Sik;Cho, Won-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.463-474
    • /
    • 2008
  • The advancement of information technology and the popularization of Internet has explosively increased the amount of multimedia contents. Therefore, the requirement of multimedia recommendation to satisfy a user's needs increases fastly. Up to now, CF is used to recommend general items and multimedia contents. However, general CF doesn't reflect visual characteristics of image contents so that it can't be adaptable to image recommendation. Besides, it has limitations in new item recommendation, the sparsity problem, and dynamic change of user preference. In this paper, we present new image recommendation method FBCF (Feature Based Collaborative Filtering) to resolve such problems. FBCF builds new user profile by clustering visual features in terms of user preference, and reflects user's current preference to recommendation by using preference feedback. Experimental result using real mobile images demonstrate that FBCF outperforms conventional CF by 400% in terms of recommendation ratio.

A Dominant Feature based Nomalization and Relational Description of Shape Signature for Scale/Rotational Robustness (2차원 형상 변화에 강건한 지배적 특징 기반 형상 시그너쳐의 정규화 및 관계 특징 기술)

  • Song, Ho-Geun;Koo, Ha-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.11
    • /
    • pp.103-111
    • /
    • 2011
  • In this paper, we propose a Geometrical Centroid Contour Distance(GCCD) which is described by shape signature based on contour sequence. The proposed method uses geomertrical relation features instead of the absolute angle based features after it was normalized and aligned with dominant feature of the shape. Experimental result with MPEG-7 CE-Shape-1 Data Set reveals that our method has low time/spatial complexity and scale/rotation robustness than the other methods, showing that the precision of our method is more accurate than the conventional desctiptors. However, performance of the GCCD is limited with concave and complex shaped objects.

A Method to Improve the Performance of Adaboost Algorithm by Using Mixed Weak Classifier (혼합 약한 분류기를 이용한 AdaBoost 알고리즘의 성능 개선 방법)

  • Kim, Jeong-Hyun;Teng, Zhu;Kim, Jin-Young;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.457-464
    • /
    • 2009
  • The weak classifier of AdaBoost algorithm is a central classification element that uses a single criterion separating positive and negative learning candidates. Finding the best criterion to separate two feature distributions influences learning capacity of the algorithm. A common way to classify the distributions is to use the mean value of the features. However, positive and negative distributions of Haar-like feature as an image descriptor are hard to classify by a single threshold. The poor classification ability of the single threshold also increases the number of boosting operations, and finally results in a poor classifier. This paper proposes a weak classifier that uses multiple criterions by adding a probabilistic criterion of the positive candidate distribution with the conventional mean classifier: the positive distribution has low variation and the values are closer to the mean while the negative distribution has large variation and values are widely spread. The difference in the variance for the positive and negative distributions is used as an additional criterion. In the learning procedure, we use a new classifier that provides a better classifier between them by selective switching between the mean and standard deviation. We call this new type of combined classifier the "Mixed Weak Classifier". The proposed weak classifier is more robust than the mean classifier alone and decreases the number of boosting operations to be converged.

An Efficient Indoor-Outdoor Scene Classification Method (효율적인 실내의 영상 분류 기법)

  • Kim, Won-Jun;Kim, Chang-Ick
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.48-55
    • /
    • 2009
  • Prior research works in indoor-outdoor classification have been conducted based on a simple combination of low-level features. However, since there are many challenging problems due to the extreme variability of the scene contents, most methods proposed recently tend to combine the low-level features with high-level information such as the presence of trees and sky. To extract these regions from videos, we need to conduct additional tasks, which may yield the increasing number of feature dimensions or computational burden. Therefore, an efficient indoor-outdoor scene classification method is proposed in this paper. First, the video is divided into the five same-sized blocks. Then we define and use the edge and color orientation histogram (ECOH) descriptors to represent each sub-block efficiently. Finally, all ECOH values are simply concatenated to generated the feature vector. To justify the efficiency and robustness of the proposed method, a diverse database of over 1200 videos is evaluated. Moreover, we improve the classification performance by using different weight values determined through the learning process.

Teaching Assistant System using Computer Vision (컴퓨터 비전을 이용한 강의 도우미 시스템)

  • Kim, Tae-Jun;Park, Chang-Hoon;Choi, Kang-Sun
    • Journal of Practical Engineering Education
    • /
    • v.5 no.2
    • /
    • pp.109-115
    • /
    • 2013
  • In this paper, a teaching assistant system using computer vision is presented. Using the proposed system, lecturers can utilize various lecture contents such as lecture notes and related video clips easily and seamlessly. In order to do transition between different lecture contents and control multimedia contents, lecturers just draw pre-defined symbols on the board without pausing the class. In the proposed teaching assistant system, a feature descriptor, so called shape context, is used for recognizing the pre-defined symbols successfully.

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

A Content-Based Image Retrieval Technique Using the Shape and Color Features of Objects (객체의 모양과 색상특징을 이용한 내용기반 영상검색 기법)

  • 박종현;박순영;오일환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.10B
    • /
    • pp.1902-1911
    • /
    • 1999
  • In this paper we present a content-based image retrieval algorithm using the visual feature vectors which describe the spatial characteristics of objects. The proposed technique uses the Gaussian mixture model(GMM) to represent multi-colored objects and the expectation maximization(EM) algorithm is employed to estimate the maximum likelihood(ML) parameters of the model. After image segmentation is performed based on GMM, the shape and color features are extracted from each object using Fourier descriptors and color histograms, respectively. Image retrieval consists of two steps: first, the shape-based query is carried out to find the candidate images whose objects have the similar shapes with the query image and second, the color-based query is followed. The experimental results show that the proposed algorithm is effective in image retrieving by using the spatial and visual features of segmented objects.

  • PDF

EEIRI: Efficient Encrypted Image Retrieval in IoT-Cloud

  • Abduljabbar, Zaid Ameen;Ibrahim, Ayad;Hussain, Mohammed Abdulridha;Hussien, Zaid Alaa;Al Sibahee, Mustafa A.;Lu, Songfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5692-5716
    • /
    • 2019
  • One of the best means to safeguard the confidentiality, security, and privacy of an image within the IoT-Cloud is through encryption. However, looking through encrypted data is a difficult process. Several techniques for searching encrypted data have been devised, but certain security solutions may not be used in IoT-Cloud because such solutions are not lightweight. We propose a lightweight scheme that can perform a content-based search of encrypted images, namely EEIRI. In this scheme, the images are represented using local features. We develop and validate a secure scheme for measuring the Euclidean distance between two descriptor sets. To improve the search efficiency, we employ the k-means clustering technique to construct a searchable tree-based index. Our index construction process ensures the privacy of the stored data and search requests. When compared with more familiar techniques of searching images over plaintexts, EEIRI is considered to be more efficient, demonstrating a higher search cost of 7% and a decrease in search accuracy of 1.7%. Numerous empirical investigations are carried out in relation to real image collections so as to evidence our work.