• Title/Summary/Keyword: Feature clustering

Search Result 449, Processing Time 0.027 seconds

SVM based Clustering Technique for Processing High Dimensional Data (고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법)

  • Kim, Man-Sun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.816-820
    • /
    • 2004
  • Clustering is a process of dividing similar data objects in data set into clusters and acquiring meaningful information in the data. The main issues related to clustering are the effective clustering of high dimensional data and optimization. This study proposed a method of measuring similarity based on SVM and a new method of calculating the number of clusters in an efficient way. The high dimensional data are mapped to Feature Space ones using kernel functions and then similarity between neighboring clusters is measured. As for created clusters, the desired number of clusters can be got using the value of similarity measured and the value of Δd. In order to verify the proposed methods, the author used data of six UCI Machine Learning Repositories and obtained the presented number of clusters as well as improved cohesiveness compared to the results of previous researches.

Topical Clustering Techniques of Twitter Documents Using Korean Wikipedia (한글 위키피디아를 이용한 트위터 문서의 주제별 클러스터링 기법)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.189-196
    • /
    • 2014
  • Recently, the need for retrieving documents is growing in SNS environment such as twitter. For supporting the twitter search, a clustering technique classifying the massively retrieved documents in terms of topics is required. However, due to the nature of twitter, there is a limit in applying previous simple techniques to clustering the twitter documents. To overcome such problem, we propose in this paper a new clustering technique suitable to twitter environment. In proposed method, we augment new terms to feature vectors representing the twitter documents, and recalculate the weights of features using Korean Wikipedia. In addition, we performed the experiments with Korean twitter documents, and proved the usability of proposed method through performance comparison with the previous techniques.

Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping (퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection)

  • Roh, Seok-Beom;Kim, Yong Soo;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.646-650
    • /
    • 2014
  • In this paper, in order to avoid the deterioration of the pattern classification performance which results from the curse of dimensionality, we propose a new feature selection method. The newly proposed feature selection method is based on Fuzzy C-Means clustering algorithm which analyzes the data points to divide them into several clusters and the concept of a function with fuzzy numbers. When it comes to the concept of a function where independent variables are fuzzy numbers and a dependent variable is a label of class, a fuzzy number should be related to the only one class label. Therefore, a good feature is a independent variable of a function with fuzzy numbers. Under this assumption, we calculate the goodness of each feature to pattern classification problem. Finally, in order to evaluate the classification ability of the proposed pattern classifier, the machine learning data sets are used.

The Efficient Feature Extraction of Handwritten Numerals in GLVQ Clustering Network (GLVQ클러스터링을 위한 필기체 숫자의 효율적인 특징 추출 방법)

  • Jeon, Jong-Won;Min, Jun-Yeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.6
    • /
    • pp.995-1001
    • /
    • 1995
  • The structure of a typical pattern recognition consists a pre-processing, a feature extraction(algorithm) and classification or recognition. In classification, when widely varying patterns exist in same category, we need the clustering which organize the similar patterns. Clustering algorithm is two approaches. Firs, statistical approaches which are k-means, ISODATA algorithm. Second, neural network approach which is T. Kohonen's LVQ(Learning Vector Quantization). Nikhil R. Palet al proposed the GLVQ(Generalized LVQ, 1993). This paper suggest the efficient feature extraction methods of handwritten numerals in GLVQ clustering network. We use the handwritten numeral data from 21's authors(ie, 200 patterns) and compare the proportion of misclassified patterns for each feature extraction methods. As results, when we use the projection combination method, the classification ratio is 98.5%.

  • PDF

Clustering of Decision Making Units using DEA (DEA를 이용한 의사결정단위의 클러스터링)

  • Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • The conventional clustering approaches are mostly based on minimizing total dissimilarity of input and output. However, the clustering approach may not be helpful in some cases of clustering decision making units (DMUs) with production feature converting multiple inputs into multiple outputs because it does not care converting functions. Data envelopment analysis (DEA) has been widely applied for efficiency estimation of such DMUs since it has non-parametric characteristics. We propose a new clustering method to identify groups of DMUs that are similar in terms of their input-output profiles. A real world example is given to explain the use and effectiveness of the proposed method. And we calculate similarity value between its result and the result of a conventional clustering method applied to the example. After the efficiency value was added to input of K-means algorithm, we calculate new similarity value and compare it with the previous one.

A Study of Basic Design Method for High Availability Clustering Framework under Distributed Computing Environment (분산컴퓨팅 환경에서의 고가용성 클러스터링 프레임워크 기본설계 연구)

  • Kim, Jeom Goo;Noh, SiChoon
    • Convergence Security Journal
    • /
    • v.13 no.3
    • /
    • pp.17-23
    • /
    • 2013
  • Clustering is required to configure clustering interdependent structural technology. Clustering handles variable workloads or impede continuity of service to continue operating in the event of a failure. Long as high-availability clustering feature focuses on server operating systems. Active-standby state of two systems when the active server fails, all services are running on the standby server, it takes the service. This function switching or switchover is called failover. Long as high-availability clustering feature focuses on server operating systems. The cluster node that is running on multiple systems and services have to duplicate each other so you can keep track of. In the event of a node failure within a few seconds the second node, the node shall perform the duties broken. Structure for high-availability clustering efficiency should be measured. System performance of infrastructure systems performance, latency, response time, CPU load factor(CPU utilization), CPU processes on the system (system process) channels are represented.

Validation Measures of Bicluster Solutions

  • Lee, Young-Rok;Lee, Jeong-Hwa;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.2
    • /
    • pp.101-108
    • /
    • 2009
  • Biclustering is a method to extract subsets of objects and features from a dataset which are characterized in some way. In contrast to traditional clustering algorithms which group objects similar in a whole feature set, biclustering methods find groups of objects which have similar values or patterns in some features. Both in clustering and biclustering, validating how much the result is informative or reliable is a very important task. Whereas validation methods of cluster solutions have been studied actively, there are only few measures to validate bicluster solutions. Furthermore, the existing validation methods of bicluster solutions have some critical problems to be used in general cases. In this paper, we review several well-known validation measures for cluster and bicluster solutions and discuss their limitations. Then, we propose several improved validation indices as modified versions of existing ones.

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

Web Document Clustering based on Graph using Hyperlinks (하이퍼링크를 이용한 그래프 기반의 웹 문서 클러스터링)

  • Lee, Joon;Kang, Jin-Beom;Choi, Joong-Min
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.590-595
    • /
    • 2009
  • With respect to the exponential increment of web documents on the internet, it is important how to improve performance of clustering method for web documents. Web document clustering techniques can offer accurate information and fast information retrieval by clustering web documents through semantic relationship. The clustering method based on mesh-graph provides high recall by calculating similarity for documents, but it requires high computation cost. This paper proposes a clustering method using hyperlinks which is structural feature of web documents in order to keep effectiveness and reduce computation cost.

  • PDF

A Density Peak Clustering Algorithm Based on Information Bottleneck

  • Yongli Liu;Congcong Zhao;Hao Chao
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.778-790
    • /
    • 2023
  • Although density peak clustering can often easily yield excellent results, there is still room for improvement when dealing with complex, high-dimensional datasets. One of the main limitations of this algorithm is its reliance on geometric distance as the sole similarity measurement. To address this limitation, we draw inspiration from the information bottleneck theory, and propose a novel density peak clustering algorithm that incorporates this theory as a similarity measure. Specifically, our algorithm utilizes the joint probability distribution between data objects and feature information, and employs the loss of mutual information as the measurement standard. This approach not only eliminates the potential for subjective error in selecting similarity method, but also enhances performance on datasets with multiple centers and high dimensionality. To evaluate the effectiveness of our algorithm, we conducted experiments using ten carefully selected datasets and compared the results with three other algorithms. The experimental results demonstrate that our information bottleneck-based density peaks clustering (IBDPC) algorithm consistently achieves high levels of accuracy, highlighting its potential as a valuable tool for data clustering tasks.