• Title/Summary/Keyword: Feature based Manufacturing

Search Result 171, Processing Time 0.027 seconds

Sliced Profile-based Automatic Extraction of Machined Features from CSG Models (단면 재구성을 통한 CSG 모델의 기계가공부품 형상추출)

  • Lee, Young-Rai
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.1
    • /
    • pp.99-112
    • /
    • 1994
  • This paper describe the development of a systematic method of slicing solid parts based on a data structure called Sliced Profile Data Structure(SPDS). SPDS is an augmented polygon data structure that allows multiple layers of sliced profiles to be connected together. The method consists of five steps: (1) Selection of slicing directions, (2) Determination of slicing levels, (3) Creation of sliced profiles, (4) Connection of sliced profiles, and (5) Refinement. The presented method is aimed at enhancing the applicability of CSG for manufacturing by overcoming the problem of non-uniqueness and global nature. The SPDS-based method of feature extraction is suitable for recognizing broad scope of features with detailed information. The method is also suitable for identifying the global relationships among features and is capable of incorporating the context dependency of feature extraction.

  • PDF

Combining Shape and SIFT Features for 3-D Object Detection and Pose Estimation (효과적인 3차원 객체 인식 및 자세 추정을 위한 외형 및 SIFT 특징 정보 결합 기법)

  • Tak, Yoon-Sik;Hwang, Een-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.429-435
    • /
    • 2010
  • Three dimensional (3-D) object detection and pose estimation from a single view query image has been an important issue in various fields such as medical applications, robot vision, and manufacturing automation. However, most of the existing methods are not appropriate in a real time environment since object detection and pose estimation requires extensive information and computation. In this paper, we present a fast 3-D object detection and pose estimation scheme based on surrounding camera view-changed images of objects. Our scheme has two parts. First, we detect images similar to the query image from the database based on the shape feature, and calculate candidate poses. Second, we perform accurate pose estimation for the candidate poses using the scale invariant feature transform (SIFT) method. We earned out extensive experiments on our prototype system and achieved excellent performance, and we report some of the results.

An Improvement Algorithm for the Image Compression Imaging

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • Lines and textures are natural properties of the surface of natural objects, and their images can be sparsely represented in suitable frames such as wavelets, curvelets and wave atoms. Based on characteristics that the curvelets framework is good at expressing the line feature and wavesat is good at representing texture features, we propose a model for the weighted sparsity constraints of the two frames. Furtherly, a multi-step iterative fast algorithm for solving the model is also proposed based on the split Bergman method. By introducing auxiliary variables and the Bergman distance, the original problem is transformed into an iterative solution of two simple sub-problems, which greatly reduces the computational complexity. Experiments using standard images show that the split-based Bergman iterative algorithm in hybrid domain defeats the traditional Wavelets framework or curvelets framework both in terms of timeliness and recovery accuracy, which demonstrates the validity of the model and algorithm in this paper.

Knowledge-based Decision Support System for Process Planning in the Electric Motor Manufacturing (전동기 제조업의 지식기반 공정계획 지원시스템에 관한 연구)

  • Song, Jung-Su;Kim, Jae-Gyun;Lee, Jae-Man
    • IE interfaces
    • /
    • v.11 no.2
    • /
    • pp.159-176
    • /
    • 1998
  • In the motor manufacturing system with the properties of short delivery and order based production, the process plan is performed individually for each order by the expert of process plan after the completion of the detail design process to satisfy the specification to be required by customer. Also it is hard to establish the standard process plan in reality because part routings and operation times are varied for each order. Hence, the production planner has the problem that is hard to establish the production schedule releasing the job to the factory because there occurs the big difference between the real time to be completed the process plan and the time to be required by the production planner. In this paper, we study the decision supporting system for the process plan based on knowledge base concept. First, we represent the knowledge of process planner as a database model through the modified POI-Feature graph. Then we design and implement the decision supporting system imbedded in the heuristic algorithm in the client/server environment using the ORACLE relational database management system.

  • PDF

Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods (쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형)

  • Seo, Seokjun;Kim, Heungseob
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

Development of Feature-based Encapsulation Process using Filler Material (충진재를 이용한 특징형상 가공용 RFPE 공정 개발)

  • Choe, Du-Seon;Lee, Su-Hong;Sin, Bo-Seong;Yun, Gyeong-Gu;Hwang, Gyeong-Hyeon;Lee, Ho-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2001
  • Machining is the commonly used process in the manufacturing of prototypes. This process offers several advantages, such as rigidity of the machine, precision of the machine, precision of the operation and specially a quick delivery. The weight and immobility of the machine support and immobilize the part during the operation. However, despite these advantages it shows, machining still presents several limitations. The immobilization, location and support of the part are referred to as fixturing or workholding and present the biggest challenge for time efficient machining. So it is important to select and design the appropriate fixturing assembly. This assembly depends on the complexity of the part and the tool paths and may require the construction of dedicated fixtures. With traditional techniques, the range of fixturable shapes is limited and the identification of suitable fixtures in a given setup involves complex reasoning. To solve this limitation and to apply the automation, this paper presents the Reference Free Part Encapsulation(RFPE) and implementation of the encapsulation system. The feature-based modeling system and the encapsulation system are implemented. The small part of which it is difficult to find out the appropriate fixturing assembly is made by this system.

  • PDF

A Study on the Development of On Machine Measuring System using 3-Dimensional solid model (3차원 형상기반 기계상 측정 시스템 개발에 관한 연구)

  • Koo B. K.;Ryu J. K.;Kim S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.3-10
    • /
    • 2002
  • In this study on machine measuring system based on solid feature was developed. This system was applied with injection mold using 3 dimensional solid modeler for verification. Developed program include pre-processor, main processor, and post processor. In pre-processor there are functions which check intersection, simulate motion of probe and calculate measuring time. Main processor generates measuring path and output NC code in Unigraphics. In post-processor functions that include evaluation of undercut or overcut and display of measuring procedure are offered. In addition analysis module for quality control of measured data on manufactured product was developed with geometric and dimensional tolerance concept. As the result developed program could get stability of system, precision of product, rapidity and cost down of manufacturing process compared with before measuring process.

  • PDF

Computer-Aided System for Bonnet tool Design Using Relation Rules (관계식을 이용한 본네트 금형설계 지원 시스템)

  • 정효상;이성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.233-239
    • /
    • 2002
  • This paper explores the applications of feature-based representation and design in the area of design for manufacturing to incorporate the tooling and process considerations into the early stages of bonnet tool design. The goal of this research is apply the concepts of feature-based design and to development an interactive design tool using relations and arrive at optimal design for the given process conditions. This paper illustrates the development of a tool design aided system that was constructed using these concepts and applied to designing bonnet sheet metal parts.

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

Development of Vision System Model for Manipulator's Assemble task (매니퓰레이터의 조립작업을 위한 비젼시스템 모델 개발)

  • 장완식
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.10-18
    • /
    • 1997
  • This paper presents the development of real-time estimation and control details for a computer vision-based robot control method. This is accomplished using a sequential estimation scheme that permits placement of these points in each of the two-dimensional image planes of monitoring cameras. Estimation model is developed based on a model that generalizes know 4-axis Scorbot manipulator kinematics to accommodate unknown relative camera position and orientation, etc. This model uses six uncertainty-of-view parameters estimated by the iteration method. The method is tested experimentally in two ways : First the validity of estimation model is tested by using the self-built test model. Second, the practicality of the presented control method is verified in performing 4-axis manipulator's assembly task. These results show that control scheme used is precise and robust. This feature can open the door to a range of application of multi-axis robot such as deburring and welding.

  • PDF