• Title/Summary/Keyword: Feature analyze

Search Result 831, Processing Time 0.026 seconds

A Study on Implementation for the PCB Design Simulator (PCB 디자인 시뮬레이터 구현에 관한 연구)

  • 김현호;우경환;이천희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.296-296
    • /
    • 2000
  • This paper describes the features of a transmission line and a wiring, and a design rule based on a demanded condition for a wiring. Like as the simulation of a circuit, by tracking the wiring path among parts that are disposed on PCB, we analyze the feature of the corresponding wiring using the design formula and rule. We implement a signal integrity simulator, which is capable of electrical and electronic simulation for the feature of a wiring signal and the corresponding signal, and the results are demonstrated.

  • PDF

A Study on Meaning and Applications of 'Transparency' in Modern Retail Space (현대 상업공간의 표피에 나타나는 투명성 연출 특성에 관한 연구)

  • Cho, Mi-Na;Park, Chan-Il
    • Proceedings of the Korean Institute of Interior Design Conference
    • /
    • 2005.10a
    • /
    • pp.165-170
    • /
    • 2005
  • It is important factor; understand definition and concept, grasp application method and property about transparency for expression of skin in design of retail space. This research do target; clarify the feature of transparency for expression of skin in modern retail space, and it is based in these viewpoint that analyze the feature through an experiment of image estimation(SD method) into object to modern retail space that express transparency of skin.

  • PDF

Analysis of Market Trajectory Data using k-NN

  • Park, So-Hyun;Ihm, Sun-Young;Park, Young-Ho
    • Journal of Multimedia Information System
    • /
    • v.5 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • Recently, as the sensor and big data analysis technology have been developed, there have been a lot of researches that analyze the purchase-related data such as the trajectory information and the stay time. Such purchase-related data is usefully used for the purchase pattern prediction and the purchase time prediction. Because it is difficult to find periodic patterns in large-scale human data, it is necessary to look at actual data sets, find various feature patterns, and then apply a machine learning algorithm appropriate to the pattern and purpose. Although existing papers have been used to analyze data using various machine learning methods, there is a lack of statistical analysis such as finding feature patterns before applying the machine learning algorithm. Therefore, we analyze the purchasing data of Songjeong Maeil Market, which is a data gathering place, and finds some characteristic patterns through statistical data analysis. Based on the results of 1, we derive meaningful conclusions by applying the machine learning algorithm and present future research directions. Through the data analysis, it was confirmed that the number of visits was different according to the regional characteristics around Songjeong Maeil Market, and the distribution of time spent by consumers could be grasped.

Security Analysis based on Differential Entropy m 3D Model Hashing (3D 모델 해싱의 미분 엔트로피 기반 보안성 분석)

  • Lee, Suk-Hwan;Kwon, Ki-Ryong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.995-1003
    • /
    • 2010
  • The content-based hashing for authentication and copy protection of image, video and 3D model has to satisfy the robustness and the security. For the security analysis of the hash value, the modelling method based on differential entropy had been presented. But this modelling can be only applied to the image hashing. This paper presents the modelling for the security analysis of the hash feature value in 3D model hashing based on differential entropy. The proposed security analysis modeling design the feature extracting methods of two types and then analyze the security of two feature values by using differential entropy modelling. In our experiment, we evaluated the security of feature extracting methods of two types and discussed about the trade-off relation of the security and the robustness of hash value.

Pattern Recognition for the Target Signal Using Acoustic Scattering Feature Parameter (표적신호 음향산란 특징파라미터를 이용한 패턴인식에 관한 연구)

  • 주재훈;신기철;김재수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.93-100
    • /
    • 2000
  • Target signal feature parameters are very important to classify target by active sonar. Two highly correlated broad band pulses separated by time T have a time separation pitch(TSP) of 1/T Hz which is equal to the trough-to-trough or peak-to-peak spacing of its spectrum. In this study, TSP informations which represent feature of each target signal were effectively extracted by the FFT. The extracted TSP feature parameters were also applied to the pattern recognition algorithm to classify target and to analyze their properties.

  • PDF

Analysis of the Time Delayed Effect for Speech Feature (음성 특징에 대한 시간 지연 효과 분석)

  • Ahn, Young-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.100-103
    • /
    • 1997
  • In this paper, we analyze the time delayed effect of speech feature. Here, the time delayed effect means that the current feature vector of speech is under the influence of the previous feature vectors. In this paper, we use a set of LPC driven cepstal coefficients and evaluate the time delayed effect of cepstrum with the performance of the speech recognition system. For the experiments, we used the speech database consisting of 22 words which uttered by 50 male speakers. The speech database uttered by 25 male speakers was used for training, and the other set was used for testing. The experimental results show that the time delayed effect is large in the lower orders of feature vector but small in the higher orders.

  • PDF

Adaptive Processing for Feature Extraction: Application of Two-Dimensional Gabor Function

  • Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.4
    • /
    • pp.319-334
    • /
    • 2001
  • Extracting primitives from imagery plays an important task in visual information processing since the primitives provide useful information about characteristics of the objects and patterns. The human visual system utilizes features without difficulty for image interpretation, scene analysis and object recognition. However, to extract and to analyze feature are difficult processing. The ultimate goal of digital image processing is to extract information and reconstruct objects automatically. The objective of this study is to develop robust method to achieve the goal of the image processing. In this study, an adaptive strategy was developed by implementing Gabor filters in order to extract feature information and to segment images. The Gabor filters are conceived as hypothetical structures of the retinal receptive fields in human vision system. Therefore, to develop a method which resembles the performance of human visual perception is possible using the Gabor filters. A method to compute appropriate parameters of the Gabor filters without human visual inspection is proposed. The entire framework is based on the theory of human visual perception. Digital images were used to evaluate the performance of the proposed strategy. The results show that the proposed adaptive approach improves performance of the Gabor filters for feature extraction and segmentation.

Experiment on Intermediate Feature Coding for Object Detection and Segmentation

  • Jeong, Min Hyuk;Jin, Hoe-Yong;Kim, Sang-Kyun;Lee, Heekyung;Choo, Hyon-Gon;Lim, Hanshin;Seo, Jeongil
    • Journal of Broadcast Engineering
    • /
    • v.25 no.7
    • /
    • pp.1081-1094
    • /
    • 2020
  • With the recent development of deep learning, most computer vision-related tasks are being solved with deep learning-based network technologies such as CNN and RNN. Computer vision tasks such as object detection or object segmentation use intermediate features extracted from the same backbone such as Resnet or FPN for training and inference for object detection and segmentation. In this paper, an experiment was conducted to find out the compression efficiency and the effect of encoding on task inference performance when the features extracted in the intermediate stage of CNN are encoded. The feature map that combines the features of 256 channels into one image and the original image were encoded in HEVC to compare and analyze the inference performance for object detection and segmentation. Since the intermediate feature map encodes the five levels of feature maps (P2 to P6), the image size and resolution are increased compared to the original image. However, when the degree of compression is weakened, the use of feature maps yields similar or better inference results to the inference performance of the original image.

Factors Influencing Experiential Value Toward Using Cosmetic AR Try-on Feature in Thailand

  • VONGURAI, Rawin
    • Journal of Distribution Science
    • /
    • v.19 no.1
    • /
    • pp.75-87
    • /
    • 2021
  • Purpose: The objective of this research is to identify the core aspects of persuasive factors influencing consumer's experiential value towards using Augmented Reality (AR) try-on feature while shopping cosmetic products online. The conceptual framework of this study is adopted and integrated from the theoretical study on how narrative experience, media richness, and presence affect the formation of experiential value in the augmented reality interactive technology (ARIT) process. Research design, data and methodology: The sample (n = 550) were collected from online and offline questionnaires by using stratified random sampling and purposive sampling methods. Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM) were used to analyze the data to confirm goodness-of-fit of the model and hypothesis testing. Results: The results indicated that media richness induced higher experiential value (consumer ROI, playfulness, service excellence and aesthetics), followed by narrative experience and presence towards using AR try-on feature. Conclusions: Consumer's experiential value towards using AR try-on feature when shopping cosmetic products online rely on media richness, narrative experience and presence respectively. Therefore, marketing practitioners are recommended to develop the feature design and content to be more useful, authentic, user-friendly and entertaining to better connect and provide confidence to consumers when shopping cosmetics online.

An Improvement of FSDD for Evaluating Multi-Dimensional Data (다차원 데이터 평가가 가능한 개선된 FSDD 연구)

  • Oh, Se-jong
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.247-253
    • /
    • 2017
  • Feature selection or variable selection is a data mining scheme for selecting highly relevant features with target concept from high dimensional data. It decreases dimensionality of data, and makes it easy to analyze clusters or classification. A feature selection scheme requires an evaluation function. Most of current evaluation functions are based on statistics or information theory, and they can evaluate only for single feature (one-dimensional data). However, features have interactions between them, and require evaluation function for multi-dimensional data for efficient feature selection. In this study, we propose modification of FSDD evaluation function for utilizing evaluation of multiple features using extended distance function. Original FSDD is just possible for single feature evaluation. Proposed approach may be expected to be applied on other single feature evaluation method.