• 제목/요약/키워드: Feature Variables

검색결과 366건 처리시간 0.028초

지지벡터기계의 변수 선택방법 비교 (Comparison of Feature Selection Methods in Support Vector Machines)

  • 김광수;박창이
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.131-139
    • /
    • 2013
  • 지지벡터기계는 잡음변수가 존재하는 경우에 성능이 저하될 수 있다. 또한 최종 분류기에서 각 변수들의 중요도를 알리 어려운 단점이 있다. 따라서 변수선택은 지지벡터기계의 해석력과 정확도를 높일 수 있다. 기존의 문헌상의 대부분의 연구는 선형 지지벡터기계에서 성근 해를 주는 벌점함수를 통해 변수를 선택에 관한 것이다. 실제로는 분류의 정확도를 높이기 위해 비선형 커널을 사용하는 경우가 일반적이다. 따라서 변수선택은 비선형 지지벡터기계에서도 마찬가지로 필요하다. 본 논문에서는 모의실험 및 실제자료를 통하여 비선형 지지벡터의 대표적인 변수선택법인 COSSO(component selection and smoothing operator)와 KNIFE(kernel iterative feature extraction)의 성능을 비교한다.

퍼지 매핑을 이용한 퍼지 패턴 분류기의 Feature Selection (Feature Selection of Fuzzy Pattern Classifier by using Fuzzy Mapping)

  • 노석범;김용수;안태천
    • 한국지능시스템학회논문지
    • /
    • 제24권6호
    • /
    • pp.646-650
    • /
    • 2014
  • 본 논문에서는 다차원 문제로 인하여 발생하는 패턴 분류 성능의 저하를 방지 하여 퍼지 패턴 분류기의 성능을 개선하기 위하여 다수의 Feature들 중에서 패턴 분류 성능 향상에 기여하는 Feature를 선택하기 위한 새로운 Feature Selection 방법을 제안 한다. 새로운 Feature Selection 방법은 각각의 Feature 들을 퍼지 클러스터링 기법을 이용하여 클러스터링 한 후 각 클러스터가 임의의 class에 속하는 정도를 계산하고 얻어진 값을 이용하여 해당 feature 가 fuzzy pattern classifier에 적용될 경우 패턴 분류 성능 개선 가능성을 평가한다. 평가된 성능 개선 가능성을 기반으로 이미 정해진 개수만큼의 Feature를 선택하는 Feature Selection을 수행한다. 본 논문에서는 제안된 방법의 성능을 평가, 비교하기 위하여 다수의 머신 러닝 데이터 집합에 적용한다.

고객 구매 행동 예측을 위한 새로운 고객 세분화 방안 (A new Customer Segmentation Method for the Prediction of Customer Buying Behavior)

  • 이장희
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2004년도 품질경영모델을 통한 가치 창출
    • /
    • pp.573-575
    • /
    • 2004
  • This study presents a new customer segmentation method based on features that can predict the customer's buying behavior. In this method, we consider all variables that can affect the customer's buying behavior including demographics, psychographics, technographics, transaction pattern-related variables, etc. We define several features which are the combination of variables with the interaction effect by using C5.0, use SOM (Self-Organizing Map) neural networks in odor to extract the feature's patterns and classify, and then make features' rules using C5.0 far the prediction of customer buying behavior

  • PDF

Face Recognition Using Feature Information and Neural Network

  • Chung, Jae-Mo;Bae, Hyeon;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.55.2-55
    • /
    • 2001
  • The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region efface candidate. The feature information in the region of face candidate is used to detect a face region. In the recognition step, as a tested, the 360 images of 30 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression, Input variables of the neural networks are the feature information that comes from the eigenface spaces. The simulation results of 30 persons show that the proposed method yields high recognition rates.

  • PDF

트러스 구조물 사이즈 최적화를 위한 무응력 부재의 선택 (Zero-Stress Member Selection for Sizing Optimization of Truss Structures)

  • 이승혜;이종현;이기학;이재홍
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.61-70
    • /
    • 2021
  • This paper describes a novel zero-stress member selecting method for sizing optimization of truss structures. When a sizing optimization method with static constraints is implemented, the member stresses are affected sensitively with changing the variables. However, because some truss members are unaffected by specific loading cases, zero-stress states are experienced by the elements. The zero-stress members could affect the computational cost and time of sizing optimization processes. Feature selection approaches can be then used to eliminate the zero-stress member from the whole variables prior to the process of optimization. Several numerical truss examples are tested using the proposed methods.

유전자 알고리즘과 정보이론을 이용한 속성선택 (Feature Selection by Genetic Algorithm and Information Theory)

  • 조재훈;이대종;송창규;김용삼;전명근
    • 한국지능시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.94-99
    • /
    • 2008
  • 속성선택 (Feature Selection)은 패턴분류 문제에서 분류기들의 성능을 향상시킬 수 있는 중요한 기법이다. 특히, 많은 속성들을 가지는 데이터의 분류문제에서 관련이 적은 데이터, 중복되거나 또는 노이즈 있는 데이터를 제거한 주요 속성부분집합을 선택하여 이용함으로써 분류기의 정확도를 향상시킬 수 있다. 본 논문에서는 유전자 알고리즘과 정보이론의 상호정보량을 이용하여 속성선택을 하는 기법을 제안하였다. 실험을 통하여 제안된 알고리즘이 패턴인식문제에서 다른 방법들보다 성능이 우수함을 보였다.

운영 데이터를 활용한 제3자 물류 환경에서의 배송 트럭 무게 예측 (Truck Weight Estimation using Operational Statistics at 3rd Party Logistics Environment)

  • 이유진;최경민;김송은;박경수;정승환
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.127-133
    • /
    • 2022
  • Many manufacturers applying third party logistics (3PLs) have some challenges to increase their logistics efficiency. This study introduces an effort to estimate the weight of the delivery trucks provided by 3PL providers, which allows the manufacturer to package and load products in trailers in advance to reduce delivery time. The accuracy of the weigh estimation is more important due to the total weight regulation. This study uses not only the data from the company but also many general prediction variables such as weather, oil prices and population of destinations. In addition, operational statistics variables are developed to indicate the availabilities of the trucks in a specific weight category for each 3PL provider. The prediction model using XGBoost regressor and permutation feature importance method provides highly acceptable performance with MAPE of 2.785% and shows the effectiveness of the developed operational statistics variables.

특성 변동 관리에 기반한 지능적 수율관리 방안 (A new Intelligent Yield Management Methodology based on Feature Manipulation)

  • 이장희
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2004년도 품질경영모델을 통한 가치 창출
    • /
    • pp.148-151
    • /
    • 2004
  • This study presents a new intelligent yield management methodology which can forecast the yield level of a production unit based on features' behaviors. In this proposed methodology, we identify the existing features using C5.0 that are combination of nodes (i.e., variables) in the decision tree generated by C5.0, use SOM(Self-Organizing Map) neural networks in oder to extract the feature's patterns and classify, and then make features' control rules using C5.0.

  • PDF

유역특성을 이용한 설계홍수량 추정 (Design Flood Estimation by Basin Characteristics)

  • 박기범;김교식;한주헌;배상수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1172-1175
    • /
    • 2006
  • 설계홍수량의 산정에 있어 일반적으로 유역의 강우와 수위자료, 유출량 자료를 이용하여 강우-유출모형을 이용하여 산정하는 방법을 사용한다. 설계홍수량을 산정하는 데 있어 수문자료의 부족으로 인하여 유역에 대한 대표단위도의 결정이 어려워 유역에 대한 지형특성 자료들을 이용하여 추정된 변수들을 이용하여 모형에 적용시켜 산정하고 있다. 모형을 이용하여 설계홍수량의 산정을 하는 것에 있어 각각의 모형의 입력변수들이 지형인자로 인해 산정되는것이나 기왕에 산정된 설계홍수량 자료들이 근본적인 자료인 유역의 특성인자와 어떠한 관계를 가지며 미계측 유역이나 하천정비기본계획이 수립되지 않은 유역에 있어 설계홍수량을 추정하는 데 있어 상당한 어려움이 있는 것이 현실이다. 본 연구에서는 설계홍수량을 추정하는 데 있어 기왕에 하천정비 기본계획에 의해 산정된 설계홍수량과 지형인자들이 어떤 상관성을 가지고 있는 가에 대하여 분석하여 지형특성자료와 확률강우량 자료를 이용한 설계홍수량 추정방안에 대하여 연구하였다.

  • PDF

건설 현장에서 발생한 업무상 재해가 근로손실일수 심각도에 미치는 특징 중요도 분석 (Analysis of the Feature Importance of Occupational Accidents Occurring at Construction Sites on the Severity of Lost Workdays)

  • 강경수;최재현;류한국
    • 한국건축시공학회지
    • /
    • 제21권2호
    • /
    • pp.165-174
    • /
    • 2021
  • 건설업은 전체 산업 분야 중에서 가장 많은 재해와 사망자를 발생시키는 산업 분야이다. 건설안전 재해를 줄이기 위한 큰 노력이 진행되어왔지만, 사망사고를 제외한 근로자의 업무복귀시간까지 회복되는 근로손실일수에 관한 연구는 매우 적은 편이다. 따라서 본 연구는 근로손실일수를 심각도로 정의하여 이를 분류하는 모형을 제안하고 학습된 모형을 통해 특징 중요도를 도출하고 중요한 특징을 분석하고자 하였다. 블랙박스 모형인 랜덤 포레스트의 학습 과정을 해석하고 추출된 특징 중요도를 통해 근로손실일수 심각도에 영향력을 행사하는 중요 변수를 추출하였다. 추출된 특징을 통해 내부에 존재하는 요인들을 분석하였다. 본 연구의 목적은 건설 현장에서 발생한 사고 사례 데이터를 랜덤 포레스트 모형을 통해 분석하고자 하였다. 근로손실일수의 심각도에 미치는 중요한 특징을 도출해 체계적으로 관리한다면 건설 재해를 예방할 수 있다.