• Title/Summary/Keyword: Feature Signal Extraction

Search Result 346, Processing Time 0.026 seconds

Learning-Based People Counting System Using an IR-UWB Radar Sensor (IR-UWB 레이다 센서를 이용한 학습 기반 인원 계수 추정 시스템)

  • Choi, Jae-Ho;Kim, Ji-Eun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • In this paper, we propose a real-time system for counting people. The proposed system uses an impulse radio ultra-wideband(IR-UWB) radar to estimate the number of people in a given location. The proposed system uses learning-based classification methods to count people more accurately. In other words, a feature vector database is constructed by exploiting the pattern of reflected signals, which depends on the number of people. Subsequently, a classifier is trained using this database. When a newly received signal data is acquired, the system automatically counts people using the pre-trained classifier. We validated the effectiveness of the proposed algorithm by presenting the results of real-time estimation of the number of people changing from 0 to 10 in an indoor environment.

Low Complexity Image Thresholding Based on Block Type Classification for Implementation of the Low Power Feature Extraction Algorithm (저전력 특징추출 알고리즘의 구현을 위한 블록 유형 분류 기반 낮은 복잡도를 갖는 영상 이진화)

  • Lee, Juseong;An, Ho-Myoung;Kim, Byungcheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.179-185
    • /
    • 2019
  • This paper proposes a block-type classification based image binarization for the implementation of the low-power feature extraction algorithm. The proposed method can be implemented with threshold value re-use technique approach when the image divided into $64{\times}64$ macro blocks size and calculating the threshold value for each block type only once. The algorithm is validated based on quantitative results that only a threshold value change rate of up to 9% occurs within the same image/block type. Existing algorithms should compute the threshold value for 64 blocks when the macro block is divided by $64{\times}64$ on the basis of $512{\times}512$ images, but all suggestions can be made only once for best cases where the same block type is printed, and for the remaining 63 blocks, the adaptive threshold calculation can be reduced by only performing a block type classification process. The threshold calculation operation is performed five times when all block types occur, and only the block type separation process can be performed for the remaining 59 blocks, so 93% adaptive threshold calculation operation can be reduced.

Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach (선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구)

  • Lee, Jung-Hyung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.184-192
    • /
    • 2022
  • Valve internal leakage is caused by damage to the internal parts of the valve, resulting in accidents and shutdowns of the piping system. This study investigated the possibility of a real-time leak detection method using the acoustic emission (AE) signal generated from the piping system during the internal leakage of a butterfly valve. Datasets of raw time-domain AE signals were collected and postprocessed for each operation mode of the valve in a systematic manner to develop a data-driven model for the detection and classification of internal leakage, by applying machine learning algorithms. The aim of this study was to determine whether it is possible to treat leak detection as a classification problem by applying two classification algorithms: support vector machine (SVM) and convolutional neural network (CNN). The results showed different performances for the algorithms and datasets used. The SVM-based binary classification models, based on feature extraction of data, achieved an overall accuracy of 83% to 90%, while in the case of a multiple classification model, the accuracy was reduced to 66%. By contrast, the CNN-based classification model achieved an accuracy of 99.85%, which is superior to those of any other models based on the SVM algorithm. The results revealed that the SVM classification model requires effective feature extraction of the AE signals to improve the accuracy of multi-class classification. Moreover, the CNN-based classification can be a promising approach to detect both leakage and valve opening as long as the performance of the processor does not degrade.

Adverse Effects on EEGs and Bio-Signals Coupling on Improving Machine Learning-Based Classification Performances

  • SuJin Bak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.133-153
    • /
    • 2023
  • In this paper, we propose a novel approach to investigating brain-signal measurement technology using Electroencephalography (EEG). Traditionally, researchers have combined EEG signals with bio-signals (BSs) to enhance the classification performance of emotional states. Our objective was to explore the synergistic effects of coupling EEG and BSs, and determine whether the combination of EEG+BS improves the classification accuracy of emotional states compared to using EEG alone or combining EEG with pseudo-random signals (PS) generated arbitrarily by random generators. Employing four feature extraction methods, we examined four combinations: EEG alone, EG+BS, EEG+BS+PS, and EEG+PS, utilizing data from two widely-used open datasets. Emotional states (task versus rest states) were classified using Support Vector Machine (SVM) and Long Short-Term Memory (LSTM) classifiers. Our results revealed that when using the highest accuracy SVM-FFT, the average error rates of EEG+BS were 4.7% and 6.5% higher than those of EEG+PS and EEG alone, respectively. We also conducted a thorough analysis of EEG+BS by combining numerous PSs. The error rate of EEG+BS+PS displayed a V-shaped curve, initially decreasing due to the deep double descent phenomenon, followed by an increase attributed to the curse of dimensionality. Consequently, our findings suggest that the combination of EEG+BS may not always yield promising classification performance.

An Efficient Wireless Signal Classification Based on Data Augmentation (데이터 증강 기반 효율적인 무선 신호 분류 연구 )

  • Sangsoon Lim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.47-55
    • /
    • 2022
  • Recently, diverse devices using different wireless technologies are gradually increasing in the IoT environment. In particular, it is essential to design an efficient feature extraction approach and detect the exact types of radio signals in order to accurately identify various radio signal modulation techniques. However, it is difficult to gather labeled wireless signal in a real environment due to the complexity of the process. In addition, various learning techniques based on deep learning have been proposed for wireless signal classification. In the case of deep learning, if the training dataset is not enough, it frequently meets the overfitting problem, which causes performance degradation of wireless signal classification techniques using deep learning models. In this paper, we propose a generative adversarial network(GAN) based on data augmentation techniques to improve classification performance when various wireless signals exist. When there are various types of wireless signals to be classified, if the amount of data representing a specific radio signal is small or unbalanced, the proposed solution is used to increase the amount of data related to the required wireless signal. In order to verify the validity of the proposed data augmentation algorithm, we generated the additional data for the specific wireless signal and implemented a CNN and LSTM-based wireless signal classifier based on the result of balancing. The experimental results show that the classification accuracy of the proposed solution is higher than when the data is unbalanced.

Design of Biometrics System Using ECG Lead III Signals (심전도 신호의 리드 III 파형을 이용한 바이오인식)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.43-50
    • /
    • 2011
  • Currently, conventional security methods including IC card or password type method are quickly switched into biometric security systems in various applications and the electrocardiogram (ECG) has been considered as one of novel biometrics way. However, conventional ECG based biometrics used lead II signal which conventionally used for formulaic signal to heart disease diagnosis and it is not suitable for biometrics since it is rather difficult to find consistent features for heart disease patents. To overcome this problem, we developed new biometrics system using ECG lead III signals. For wave extraction, signal peak points are extracted through AAV algorithm. For feature selection, extracted waves are categorized into one of four wave types and total twenty two features including number of vertices, wave shapes, amplitude information and interval information are extracted based on their wave types. Experimental results for thirty-six people showed 100% specificity, 95.59% sensitivity and 99.17% of overall identification accuracy.

Development of Human-machine Interface based on EMG and EOG (근전도와 안전도 기반의 인간-기계 인터페이스기술)

  • Gang, Gyeong Woo;Kim, Tae Seon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.129-137
    • /
    • 2013
  • As the usage of computer based systems continues to increase in our normal life, there are constant efforts to enhance the accessibility of information for handicapped people. For this, it is essential to develop new interface ways for physical disabled peoples by means of human-computer interface (HCI) or human-machine interface (HMI). In this paper, we developed HMI using electromyogram (EMG) and electrooculogram (EOG) for people with physical disabilities. Developed system is composed of two modules, hardware module for signal sensing and software module for feature extraction and pattern classification. To maximize ease of use, only two skin contact electrodes are attached on both ends of brow, and EOG and EMG are measured simultaneously through these two electrodes. From measured signal, nine kinds of command patterns are extracted and defined using signal processing and pattern classification method. Through Java based real-time monitoring program, developed system showed 92.52% of command recognition rate. In addition, to show the capability of the developed system on real applications, five different types of commands are used to control ER1 robot. The results show that developed system can be applied to disabled person with quadriplegia as a novel interface way.

Spectrum Sensing based on Support Vector Machine using Wavelet Packet Decomposition in Cognitive Radio Systems (인지 무선 시스템에서 웨이블릿 패킷 분해를 이용한 서포트 벡터 머신 기반 스펙트럼 센싱)

  • Lee, Gyu-Hyung;Lee, Young-Doo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.81-88
    • /
    • 2018
  • Spectrum sensing, the key technology of the cognitive radio networks, is used by a secondary user to determine the frequency state of a primary user. The energy detection in the spectrum sensing determines the presence or absence of a primary user according to the intensity of the allocated channel signal. Since this technique simply uses the strength of the signal for spectrum sensing, it is difficult to detect the signal of a primary user in the low SNR band. In this paper, we propose a way to combine spectrum sensing and support vector machine using wavelet packet decomposition to overcome performance degradation in low SNR band. In our proposed scheme, the sensing signals were extracted by wavelet packet decomposition and then used as training data and test data for support vector machine. The simulation results of the proposed scheme are compared with the energy detection using the AUC of the ROC curve and the accuracy according to the SNR band. With simulation results, we demonstrate that the proposed scheme show better determining performance than one of energy detection in the low SNR band.

An R-wave Detection method in ECG Signal Using Refractory Period (ECG 신호에서 불응기를 이용한 R-파 검출 방법)

  • Kim, Jin-Sub;Kim, Jea-Soo;Kim, Jeong-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.93-101
    • /
    • 2013
  • The accurate detection of R-wave is important for other feature extraction in ECG, and R-wave has a lot of medical information about heart. Numerous R-wave detection algorithms have been studied on the ECG signal shape analysis, but it was difficult to find accurate R-wave when the shape of R-wave is similar to the shape of P-wave. This paper presents an R-wave detection method based on the refractory period that is the period of depolarization and repolarization of the cell membrane after excitation. And we also use the shape of kurtosis in the refractory period. The proposed method is validated using the ECG records of the MIT-BIH arrhythmia database. Experimental results show that the proposed method significantly outperforms other method in case of 105 and 108 record that have R-wave similar to P-wave, as well as other records.

Frontal Face Region Extraction & Features Extraction for Ocular Inspection (망진을 위한 정면 얼굴 영역 및 특징 요소 추출)

  • Cho Dong-Uk;Kim Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.585-592
    • /
    • 2005
  • One of the most important things in the researches on diseases is to attach more importance to prevention of a disease and preservation of health than to treatment of a disease, also to foods rather than to medicines. In this context, the most significant concern in examining a patient is to find the presence of disease, and, if any, to diaguose the type of disease, after which a pharmacotherapy is followed. In this paper, various diagnosis methods of Oriental medicines are discussed. And ocular inspection, the most important method among the 4 disease diagnoses of Oriental medicines, is studied. Observing a person's shape and color has been the major method for ocular inspection, which usually has been dependent upon doctor's intuition as of these days. We are developing an automatic system which provides objective basic data for ocular inspection. As the first stage, we applied the signal processing techniques to automatic feature extraction of faces for ocular inspection. Firstly, facial regions are extracted from the point of frontal view, which was followed by extraction of their features. The experiment applied to 20 persons showed that frontal face regions are perfectly extracted, as well as their features, such as eyes, eyebrows, noses and mouths. Future work will seek to address the issues of morphological operation for a few unfinished extraction results, such as combined hair and eyebrows.