• Title/Summary/Keyword: Feature Signal Extraction

Search Result 344, Processing Time 0.027 seconds

Emotion recognition from speech using Gammatone auditory filterbank

  • Le, Ba-Vui;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.

A Study on the Application of Digital Signal Processing for Pattern Recognition of Microdefects (미소결함의 형상인식을 위한 디지털 신호처리 적용에 관한 연구)

  • 홍석주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.1
    • /
    • pp.119-127
    • /
    • 2000
  • In this study the classified researches the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing feature extraction feature selection and classifi-er selection is teated by bulk,. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function the empirical Bayesian classifier. Also the pattern recognition technology is applied to classifica-tion problem of natural flaw(i.e multiple classification problem-crack lack of penetration lack of fusion porosity and slag inclusion the planar and volumetric flaw classification problem), According to this result it is possible to acquire the recognition rate of 83% above even through it is different a little according to domain extracting the feature and the classifier.

  • PDF

Fault Detection of Unbalanced Cycle Signal Data Using SOM-based Feature Signal Extraction Method (SOM기반 특징 신호 추출 기법을 이용한 불균형 주기 신호의 이상 탐지)

  • Kim, Song-Ee;Kang, Ji-Hoon;Park, Jong-Hyuck;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • In this paper, a feature signal extraction method is proposed in order to enhance the low performance of fault detection caused by unbalanced data which denotes the situations when severe disparity exists between the numbers of class instances. Most of the cyclic signals gathered during the process are recognized as normal, while only a few signals are regarded as fault; the majorities of cyclic signals data are unbalanced data. SOM(Self-Organizing Map)-based feature signal extraction method is considered to fix the adverse effects caused by unbalanced data. The weight neurons, mapped to the every node of SOM grid, are extracted as the feature signals of both class data which are used as a reference data set for fault detection. kNN(k-Nearest Neighbor) and SVM(Support Vector Machine) are considered to make fault detection models with comparisons to Hotelling's $T^2$ Control Chart, the most widely used method for fault detection. Experiments are conducted by using simulated process signals which resembles the frequent cyclic signals in semiconductor manufacturing.

Image Retrieval Using Color Correlogram from a Segmented Image (분할된 영상에서의 칼라 코렐로그램을 이용한 영상검색)

  • 안명석;조석제
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.153-156
    • /
    • 2000
  • Recently, there has been studied on feature extraction method for efficient content-based image retrieval. Especially, Many researchers have been studying on extracting feature from color Information, because of its advantages. This paper proposes a feature and its extraction method based on color correlogram that is extracted from color information in an image. the proposed method is computed from the image segmented into two parts; the complex part and the plain part. Our experiments show that the performance of the proposed method is better as compared with that of the original color correlogram method.

  • PDF

Ultrasonic Signal Analysis with DSP for the Pattern Recognition of Welding Flaws

  • Kim, Jae-Yeol;Cho, Gyu-Jae;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.106-110
    • /
    • 2000
  • The researches classifying the artificial flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including user defined function is developed and the total procedure is made up the digital signal processing, feature extraction, feature selection, classfier design. Specially it is composed with and discussed using the ststistical classfier such as the linear discriminant function classfier, the empirical Bayesian classfier.

  • PDF

Fingerprint Feature Extraction Using the Convex Structure (컨벡스(Convex) 구조를 이용한지문의 특징점 추출)

  • 김두현;박래홍
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, we propose a new fingerprint feature extraction method using the convex structure. A fingerprint minutiae flows along the uniform direction and is regarded as a sinusoidal signal across the normal direction. Local maxima of the signal represent coarse thinned one-pixel-wide ridges in which the convex region of the signal correspond to ridges. The proposed fingerprint feature extraction method detects the convex structure and local maxima. Finally fingerprint features are extracted from one-pixel-wide ridges. Because it has no parameter, it is efficient for various fingerprint identification systems.

A Study on Feature Extraction of Fault Signal for Stator Winding using Epoxy/Mica Coupler (에폭시/마이카 커플러를 이용한 고정자권선 결함신호 특징추출에 관한연구)

  • Park, Jae-Jun;Kim, Hee-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.225-226
    • /
    • 2005
  • In this Study, we have acquired 5-simulation Fault types Signals of high voltage Motor stator winding using epoxy/mica coupler. In order to know stator winding fault type using fault signals, we have performed feature extraction to apply wavelet transform technique. we have obtained skewness and kurtosis as statistical parameters of fault signal pattern from non deterioration state winding. We have know that 5 fault signals types have done an exponential function pattern shape but individually fault a class widely was different each other a signal waveform of pattern.

  • PDF

Feature Extraction of Simulated fault Signals in Stator Windings of a High Voltage Motor and Classification of Faulty Signals

  • Park, Jae-Jun;Jang, In-Bum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.965-975
    • /
    • 2005
  • In the case of the fault in stator windings of a high voltage motor. it facilitates certain destructive characteristics in insulations. This will result in a decreased reliability in power supplies and will prevent the generation of electricity, which will result in huge economic losses. This study simulates motor windings using normal windings and four faulty windings for an actual fault in stator winding of a high voltage motor. The partial discharge signals produced in each faulty winding were measured using an 80 PF epoxy/mica coupler sensor. In order to quantified signal waves its a way of feature extraction for each faulty signal, the signal wave of winding was quantified to measure the degree of skewness shape and kurtosis, which are both types of statistical parameters, using a discrete wavelet transformation method for each faulty type. Wave types present different types lot each faulty type, and the skewness and kurtosis also present different quantified values. The result of feature extraction was used as a preprocessing stage to identify a certain fault in stater windings. It is evident that the type of faulty signals can be classified from the test results using faulty signals that were randomly selected from the signal, which was not applied in the training after the training and learning period, by applying it to a back-propagation algorithm due to the supervising and learning method in a neural network in order to classify the faulty type. This becomes an important basis for studying diagnosis methods using the classification of faulty signals with a feature extraction algorithm, which can diagnose the fault of stator windings in the future.

A Study of Pattern Classification System Design Using Wavelet Neural Network and EEG Signal Classification (웨이블릿 신경망을 이용한 패턴 분류 시스템 설계 및 EEG 신호 분류에 대한 연구)

  • Im, Seong-Gil;Park, Chan-Ho;Lee, Hyeon-Su
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.32-43
    • /
    • 2002
  • In this paper, we propose a pattern classification system for digital signal which is based on neural networks. The proposed system consists of two models of neural network. The first part is a wavelet neural network whose role is a feature extraction. For this part, we compare existing models of wavelet networks and propose a new model for feature extraction. The other part is a wavelet network for pattern classification. We modify the structure of previous wavelet network for pattern classification and propose a learning method. The inputs of the pattern classification wavelet network is connection weights, dilation and translation parameters in hidden nodes of feature extraction network. And the output is a class of the signal which is input of feature extraction network. The proposed system is, applied to classification of EEG signal based on frequency.

Ultrasonic Pattern Recognition of Welding Defects Using the Chaotic Feature Extraction (카오스 특징 추출에 의한 용접 결함의 초음파 형상 인식)

  • Lee, Won;Yoon, In-Sik;Lee, Byung-Chae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.167-174
    • /
    • 1998
  • The ultrasonic test is recognized for its significance as a non-destructive testing method to detect volume defects such as porosity and incomplete penetration which reduce strength in the weld zone. This paper illustrates the defect detection in the weld zone of ferritic carbon steel using ultrasonic wave and the evaluation of pattern recognition by chaotic feature extraction using time series signal of detected defects as data. Shown in the time series data were that the time delay was 4 and the embedding dimension was 6 which indicate the geometric dimension of the subject system and the extent of information correlation. Based on fractal dimension and lyapunov exponent in quantitative chaotic feature extraction, feature value of 2.15, 0.47 is presented for porosity and 2.24, 0.51 for incomplete penetration The precision rate of the pattern recognition is enhanced with these values on the total waveform of defect signal in the weld zone. Therefore, we think that the ultrasonic pattern recognition method of weld zone defects of ferritic carbon steel by ultrasonic-chaotic feature extraction proposed in this paper can boost precision rate further than the existing method applying only partial waveform.

  • PDF