• Title/Summary/Keyword: Feature Profile

Search Result 205, Processing Time 0.025 seconds

Voice Activity Detection using Motion and Variation of Intensity in The Mouth Region (입술 영역의 움직임과 밝기 변화를 이용한 음성구간 검출 알고리즘 개발)

  • Kim, Gi-Bak;Ryu, Je-Woong;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.17 no.3
    • /
    • pp.519-528
    • /
    • 2012
  • Voice activity detection (VAD) is generally conducted by extracting features from the acoustic signal and a decision rule. The performance of such VAD algorithms driven by the input acoustic signal highly depends on the acoustic noise. When video signals are available as well, the performance of VAD can be enhanced by using the visual information which is not affected by the acoustic noise. Previous visual VAD algorithms usually use single visual feature to detect the lip activity, such as active appearance models, optical flow or intensity variation. Based on the analysis of the weakness of each feature, we propose to combine intensity change measure and the optical flow in the mouth region, which can compensate for each other's weakness. In order to minimize the computational complexity, we develop simple measures that avoid statistical estimation or modeling. Specifically, the optical flow is the averaged motion vector of some grid regions and the intensity variation is detected by simple thresholding. To extract the mouth region, we propose a simple algorithm which first detects two eyes and uses the profile of intensity to detect the center of mouth. Experiments show that the proposed combination of two simple measures show higher detection rates for the given false positive rate than the methods that use a single feature.

The Correlation Between Smartphone Addiction and Sensory Processing Feature Depending on Gender in College Students (작업치료전공 대학생의 성별에 따른 스마트폰 중독과 감각처리와의 관련성)

  • Hong, Eunkyoung;Lee, Hyerim
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 2018
  • Objective : The purpose of this study was to investigate smartphone addition and sensory processing character depend on gender for occupational therapy (OT) students, and to identify the correlation between smartphone addiction and sensory processing feature. Methods : Participants of this study were 168 (70 male/90 female) students majoring occupational therapy. Measurements in this study were a questionnaire about general information of subject, smartphone addiction scale, and adult/adolescent sensory profile. Data collection period was from November 2017 to March 2018. Methods for the data analysis included descriptive statistics, independent t-test and Pearson correlation of SPSS 22.0. Results : In term of the purpose of using smartphone, majority response was communication and gaming ranked in next. There were difference between male and female in the total smartphone addition, cyberspace-oriented relationship, withdrawal and tolerance. The result showed that all sensory processing are related with total smartphone addition (r = .236 ~ .603) for man. And for women, total smartphone addition is little related with the taste/smell processing (r= .290), visual processing (r= .324), touch processing (r= .214), low registration (r= .214), sensory sensitivity (r= .243), and sensory avoiding (r= .217). Conclusion : This study found that there is difference between male and female in terms of relation between smartphone addition and sensory processing feature according for occupational therapy students.

Proposing Shape Alignment for an Improved Active Shape Model (ASM의 성능향상을 위한 형태 정렬 방식 제안)

  • Hahn, Hee-Il
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • In this paper an extension to an original active shape model(ASM) for facial feature extraction is presented. The original ASM suffers from poor shape alignment by aligning the shape model to a new instant of the object in a given image using a simple similarity transformation. It exploits only informations such as scale, rotation and shift in horizontal and vertical directions, which does not cope effectively with the complex pose variation. To solve the problem, new shape alignment with 6 degrees of freedom is derived, which corresponds to an affine transformation. Another extension is to speed up the calculation of the Mahalanobis distance for 2-D profiles by trimming the profile covariance matrices. Extensive experiment is conducted with several images of varying poses to check the performance of the proposed method to segment the human faces.

On-line signature verification method using Gabor filter (Gabor 필터를 이용한 온라인 서명 검증 기법)

  • 이종현;김성훈;김재희
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.129-137
    • /
    • 2004
  • This paper presents a signature verification method that uses Gabor filter in computing similarity between signatures. In computing similarity to compare two on-line signatures, the temporal relationship between two signatures should be computed in advance. However, conventional point matching method using DP(dynamic programming) matching consumes much computation. In this paper, we propose a fast method for computing the temporal relationship between two on-line signatures by using the phase output of Gabor Inter applied on the on-line signature signals. Two similarity measures are defined in the method: Temporal Similarity and Temporally Arranged Feature Profile Similarity. With the proposed method, Ive could compare signatures 30 times faster than conventional method using DP matching.

Soil-structure interaction effects on seismic behavior of a hyperbolic cooling tower using three-parameter Vlasov foundation model

  • Karakas, Ali I.;Ozgan, Korhan;Daloglu, Ayse T.
    • Earthquakes and Structures
    • /
    • v.14 no.1
    • /
    • pp.85-94
    • /
    • 2018
  • The paper focuses on the seismic responses of a hyperbolic cooling tower resting on soil foundation represented by the three-parameter Vlasov elastic soil model. The three-parameter soil model eliminates the necessity of field testing to determine soil parameters such as reaction modulus and shear parameter. These parameters are calculated using an iterative procedure depending on the soil surface vertical deformation profile in the model. The soil and tower system are modeled in SAP2000 structural analysis program using a computing tool coded in MATLAB. The tool provides a two-way data transfer between SAP2000 and MATLAB with the help of Open Application Programming Interface (OAPI) feature of SAP2000. The response spectrum analyses of the tower system with circular V-shaped supporting columns and annular raft foundation on elastic soil are conducted thanks to the coded tool. The shell and column forces and displacements are presented for different soil conditions and fixed raft base condition to investigate the effects of soil-structure interaction. Numerical results indicate that the flexibility of soil foundation leads to an increase in displacements but a decrease in shell membrane and column forces. Therefore, it can be stated that the consideration of soil-structure interaction in the seismic response analysis of the cooling tower system provides an economical design process.

Blue excesses in different evolutionary stages of massive star-forming regions

  • Jin, Mihwa;Lee, Jeong-Eun;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.53.3-53.3
    • /
    • 2015
  • We analyzed both HCN J=1-0 and HNC J=1-0 line profiles to study the inflow motions in different evolutionary stages of massive star formation; infrared dark clouds (IRDCs), high-mass protostellar object (HMPOs), and ultra-compact HII regions (UCHIIs). The infall asymmetry in HCN spectra seems to be prevalent throughout all the three evolutionary phases, with IRDCs showing the largest excess in blue profile. In the case of HNC spectra, the prevalence of blue sources does not appear, excepting for IRDCs. We suggest that this line is not appropriate to trace infall motion in evolved stages of massive star formation because of an astrochemical effect. This result spotlights the importance of considering chemistry in dynamical study in star-forming regions. The fact that the IRDCs show the highest blue excess in both infall tracers indicates that the most active infall occurs in the early phase of star formation, i.e., the IRDC phase rather than in the later phases. However, the UCHIIs is likely still accreting matters. We also found that the absorption dips of the HNC spectra in all blue sources are red--shifted relative to their central velocities. These red-shifted absorption dips may indicate the observational signature of overall collapse although observations with better resolutions are needed to examine this feature more in detail.

  • PDF

Vertical Migration of Sound Scatterers in the Southern Yellow Sea in Summer

  • Lu, Lian-Gang;Liu, Jianjun;Yu, Fei;Wu, Wei;Yang, Xiaodong
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Acoustic volume backscattering strength data were collected and Conductivity Temperature Depth (CTD) measurements were conducted in the southern Yellow Sea in summer 2005 and 2006. The high temporal and vertical resolution acoustic data measured with a 307 kHz Acoustic Doppler Current Profiler (ADCP) and a 250 kHz acoustic Doppler profile (ADP) had dominant diel variation, which resulted from vertical migration of sound scatterers. Some scatterers congregating in the bottom layer in the daytime migrated upward at dusk, and migrated downward into the bottom layer at dawn. The migration speeds were estimated. More than 33 days data show that the diel migration varies with time. The feature of migration measured with ADCP and ADP is consistent to some extent with what is described in the study on vertical migration of zooplankton in the southern Yellow Sea with conventional net samples.

Command Generation Method for High-Speed and Precise Positioning of Positioning Stage (위치결정 스테이지의 고속 정밀 위치결정을 위한 입력성형명령 생성 기법)

  • Jang, Joon-Won;Park, Sang-Won;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.122-129
    • /
    • 2008
  • This paper deals with precise positioning of a high-speed positioning stage without inducing residual vibration by using an input shaping technique. Input shaping is well known to be a very effective tool for suppressing the residual vibration of flexible structures. However, the ordinary input shaping for positioning stages is designated mostly for velocity regulation, not for the residual vibration at the target position. The main difficulties in implementing input shaping along with precise positioning are the time delay caused by the servo system characteristics and the s-curve feature often employed in some motor controllers. This paper analyzes the dynamic responses of a single-mode-dominate stage system subjected to input shaping. A theoretical model is developed io investigate the nature of system. In order to overcome the difficulty, this paper proposes an improved input shaper based on modified command profile generation. The proposed method is proved effective through experiments and simulations.

Effect of Vibrational Amplitude on Friction and Wear Properties of Magnetorheological Elastomer (진폭에 따른 자기유변탄성체의 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.39-43
    • /
    • 2016
  • Magnetorheological elastomers (MREs) are a type of “smart” material, and their properties can be controlled rapidly and reversibly under the influence of an external stimulus. The application of an external magnetic field can change the shear modulus, hardness, and friction coefficient of MREs. The friction can cause vibration; moreover, the vibration can affect friction. The change of friction depends on the relative motion, normal force, roughness of the rubbing surfaces, material type, temperature, lubrication, relative humidity, and vibration condition. As MREs are a type of “smart material,” their friction coefficient can be reduced by applying an external magnetic field—the applications of this feature in engineering have been widely studied. However, the friction properties of MREs under vibration have not been tested to date. In this study, MRE samples and a reciprocating friction tester were fabricated. The friction coefficient was measured to evaluate the friction properties under various vibration conditions; subsequently, the wear depth and wear surface profile of the MRE were observed in order to evaluate the wear properties. The results show that the friction coefficient of the MREs decreased when a magnetic field was applied. Moreover, the friction coefficient decreased when the vibrational amplitudes increased. The wear depth of the MRE also decreased as the vibrational amplitudes increased.

Development of Electron Beam Monte Carlo Simulation and Analysis of SEM Imaging Characteristics (전자빔 몬테 카를로 시물레이션 프로그램 개발 및 전자현미경 이미징 특성 분석)

  • Kim, Heung-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.554-562
    • /
    • 2012
  • Processing of Scanning electron microscope imaging has been analyzed in both secondary electron (SE) imaging and backscattered electron (BSE) image. Because of unique characteristics of both secondary electron and backscattered electron image, mechanism of imaging process and image quality are quite different each other. For the sake of characterize imaging process, Monte Carlo simulation code have been developed. It simulates electron penetration and depth profile in certain material. In addition, secondary electron and backscattered electron generation process as well as their spatial distribution and energy characteristics can be simulated. Geometries that has fundamental feature have been imaged using the developed Monte Carlo code. Two, SE and BSE images generation process will be discussed. BSE imaging process can be readily used to discriminate in both material and geometry by simply changing position and direction of BSE detector. The developed MC code could be useful to design BSE detector and their position. Furthermore, surface reconstruction technique is possibly developed at the further research efforts. Basics of Monte Carlo simulation method will be discussed as well as characteristics of SE and BSE images.