• Title/Summary/Keyword: Feature Learning

Search Result 1,958, Processing Time 0.024 seconds

Design of Lazy Classifier based on Fuzzy k-Nearest Neighbors and Reconstruction Error (퍼지 k-Nearest Neighbors 와 Reconstruction Error 기반 Lazy Classifier 설계)

  • Roh, Seok-Beom;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • In this paper, we proposed a new lazy classifier with fuzzy k-nearest neighbors approach and feature selection which is based on reconstruction error. Reconstruction error is the performance index for locally linear reconstruction. When a new query point is given, fuzzy k-nearest neighbors approach defines the local area where the local classifier is available and assigns the weighting values to the data patterns which are involved within the local area. After defining the local area and assigning the weighting value, the feature selection is carried out to reduce the dimension of the feature space. When some features are selected in terms of the reconstruction error, the local classifier which is a sort of polynomial is developed using weighted least square estimation. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods such as standard neural networks, support vector machine, linear discriminant analysis, and C4.5 trees.

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we propose a feature selection technique for multi-label classification. Many existing feature selection techniques have selected features by calculating the relation between features and labels such as a mutual information scale. However, since the mutual information measure requires a joint probability, it is difficult to calculate the joint probability from an actual premise feature set. Therefore, it has the disadvantage that only a few features can be calculated and only local optimization is possible. Away from this regional optimization problem, we propose a feature selection technique that constructs a low-rank space in the entire given feature space and selects features with sparsity. To this end, we designed a regression-based objective function using Nuclear norm, and proposed an algorithm of gradient descent method to solve the optimization problem of this objective function. Based on the results of multi-label classification experiments on four data and three multi-label classification performance, the proposed methodology showed better performance than the existing feature selection technique. In addition, it was showed by experimental results that the performance change is insensitive even to the parameter value change of the proposed objective function.

Convolutional Neural Network Based Image Processing System

  • Kim, Hankil;Kim, Jinyoung;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.160-165
    • /
    • 2018
  • This paper designed and developed the image processing system of integrating feature extraction and matching by using convolutional neural network (CNN), rather than relying on the simple method of processing feature extraction and matching separately in the image processing of conventional image recognition system. To implement it, the proposed system enables CNN to operate and analyze the performance of conventional image processing system. This system extracts the features of an image using CNN and then learns them by the neural network. The proposed system showed 84% accuracy of recognition. The proposed system is a model of recognizing learned images by deep learning. Therefore, it can run in batch and work easily under any platform (including embedded platform) that can read all kinds of files anytime. Also, it does not require the implementing of feature extraction algorithm and matching algorithm therefore it can save time and it is efficient. As a result, it can be widely used as an image recognition program.

Intention Classification for Retrieval of Health Questions

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.7 no.1
    • /
    • pp.101-120
    • /
    • 2017
  • Healthcare professionals have edited many health questions (HQs) and their answers for healthcare consumers on the Internet. The HQs provide both readable and reliable health information, and hence retrieval of those HQs that are relevant to a given question is essential for health education and promotion through the Internet. However, retrieval of relevant HQs needs to be based on the recognition of the intention of each HQ, which is difficult to be done by predefining syntactic and semantic rules. We thus model the intention recognition problem as a text classification problem, and develop two techniques to improve a learning-based text classifier for the problem. The two techniques improve the classifier by location-based and area-based feature weightings, respectively. Experimental results show that, the two techniques can work together to significantly improve a Support Vector Machine classifier in both the recognition of HQ intentions and the retrieval of relevant HQs.

Design and Implementation of the Quality Performance Improvement for Process System Using Neural Network (가공시스템에서 신경회로망을 이용한 품질의 성능 개선에 관한 설계 및 구현)

  • 문희근;김영탁;김수정;김관형;탁한호;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.179-182
    • /
    • 2002
  • In this paper, this system makes use of the analog sensor and converts the feature of fish analog signal when sensor is operating with CPU(80C196KC). Then, After signal processing, this feature Is classified a special feature and a outline of fish by using the neural network, one of the artificial intelligence scheme. This neural network classifies fish pattern of very simple and short calculation. This has linear activation function and the error backpropagation is used as a learning algorithm. And the neural network is learned in off-line process. Because an adaptation period of neural network is too long time when random initial weights are used, off-line learning Is induced to decrease the Progress time We confirmed this method has better performance than somewhat outdated machines.

Finding Biomarker Genes for Type 2 Diabetes Mellitus using Chi-2 Feature Selection Method and Logistic Regression Supervised Learning Algorithm

  • Alshamlan, Hala M
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.9-13
    • /
    • 2021
  • Type 2 diabetes mellitus (T2D) is a complex diabetes disease that is caused by high blood sugar, insulin resistance, and a relative lack of insulin. Many studies are trying to predict variant genes that causes this disease by using a sample disease model. In this paper we predict diabetic and normal persons by using fisher score feature selection, chi-2 feature selection and Logistic Regression supervised learning algorithm with best accuracy of 90.23%.

Unsupervised learning with hierarchical feature selection for DDoS mitigation within the ISP domain

  • Ko, Ili;Chambers, Desmond;Barrett, Enda
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.574-584
    • /
    • 2019
  • A new Mirai variant found recently was equipped with a dynamic update ability, which increases the level of difficulty for DDoS mitigation. Continuous development of 5G technology and an increasing number of Internet of Things (IoT) devices connected to the network pose serious threats to cyber security. Therefore, researchers have tried to develop better DDoS mitigation systems. However, the majority of the existing models provide centralized solutions either by deploying the system with additional servers at the host site, on the cloud, or at third party locations, which may cause latency. Since Internet service providers (ISP) are links between the internet and users, deploying the defense system within the ISP domain is the panacea for delivering an efficient solution. To cope with the dynamic nature of the new DDoS attacks, we utilized an unsupervised artificial neural network to develop a hierarchical two-layered self-organizing map equipped with a twofold feature selection for DDoS mitigation within the ISP domain.

Facial Feature Based Image-to-Image Translation Method

  • Kang, Shinjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4835-4848
    • /
    • 2020
  • The recent expansion of the digital content market is increasing the technical demand for various facial image transformations within the virtual environment. The recent image translation technology enables changes between various domains. However, current image-to-image translation techniques do not provide stable performance through unsupervised learning, especially for shape learning in the face transition field. This is because the face is a highly sensitive feature, and the quality of the resulting image is significantly affected, especially if the transitions in the eyes, nose, and mouth are not effectively performed. We herein propose a new unsupervised method that can transform an in-wild face image into another face style through radical transformation. Specifically, the proposed method applies two face-specific feature loss functions for a generative adversarial network. The proposed technique shows that stable domain conversion to other domains is possible while maintaining the image characteristics in the eyes, nose, and mouth.

Skin Lesion Segmentation with Codec Structure Based Upper and Lower Layer Feature Fusion Mechanism

  • Yang, Cheng;Lu, GuanMing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.60-79
    • /
    • 2022
  • The U-Net architecture-based segmentation models attained remarkable performance in numerous medical image segmentation missions like skin lesion segmentation. Nevertheless, the resolution gradually decreases and the loss of spatial information increases with deeper network. The fusion of adjacent layers is not enough to make up for the lost spatial information, thus resulting in errors of segmentation boundary so as to decline the accuracy of segmentation. To tackle the issue, we propose a new deep learning-based segmentation model. In the decoding stage, the feature channels of each decoding unit are concatenated with all the feature channels of the upper coding unit. Which is done in order to ensure the segmentation effect by integrating spatial and semantic information, and promotes the robustness and generalization of our model by combining the atrous spatial pyramid pooling (ASPP) module and channel attention module (CAM). Extensive experiments on ISIC2016 and ISIC2017 common datasets proved that our model implements well and outperforms compared segmentation models for skin lesion segmentation.

Small Marker Detection with Attention Model in Robotic Applications (로봇시스템에서 작은 마커 인식을 하기 위한 사물 감지 어텐션 모델)

  • Kim, Minjae;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • As robots are considered one of the mainstream digital transformations, robots with machine vision becomes a main area of study providing the ability to check what robots watch and make decisions based on it. However, it is difficult to find a small object in the image mainly due to the flaw of the most of visual recognition networks. Because visual recognition networks are mostly convolution neural network which usually consider local features. So, we make a model considering not only local feature, but also global feature. In this paper, we propose a detection method of a small marker on the object using deep learning and an algorithm that considers global features by combining Transformer's self-attention technique with a convolutional neural network. We suggest a self-attention model with new definition of Query, Key and Value for model to learn global feature and simplified equation by getting rid of position vector and classification token which cause the model to be heavy and slow. Finally, we show that our model achieves higher mAP than state of the art model YOLOr.