• Title/Summary/Keyword: Feature Discrimination

Search Result 172, Processing Time 0.021 seconds

An Improved method of Two Stage Linear Discriminant Analysis

  • Chen, Yarui;Tao, Xin;Xiong, Congcong;Yang, Jucheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1243-1263
    • /
    • 2018
  • The two-stage linear discrimination analysis (TSLDA) is a feature extraction technique to solve the small size sample problem in the field of image recognition. The TSLDA has retained all subspace information of the between-class scatter and within-class scatter. However, the feature information in the four subspaces may not be entirely beneficial for classification, and the regularization procedure for eliminating singular metrics in TSLDA has higher time complexity. In order to address these drawbacks, this paper proposes an improved two-stage linear discriminant analysis (Improved TSLDA). The Improved TSLDA proposes a selection and compression method to extract superior feature information from the four subspaces to constitute optimal projection space, where it defines a single Fisher criterion to measure the importance of single feature vector. Meanwhile, Improved TSLDA also applies an approximation matrix method to eliminate the singular matrices and reduce its time complexity. This paper presents comparative experiments on five face databases and one handwritten digit database to validate the effectiveness of the Improved TSLDA.

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

Company Name Discrimination in Tweets using Topic Signatures Extracted from News Corpus

  • Hong, Beomseok;Kim, Yanggon;Lee, Sang Ho
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.128-136
    • /
    • 2016
  • It is impossible for any human being to analyze the more than 500 million tweets that are generated per day. Lexical ambiguities on Twitter make it difficult to retrieve the desired data and relevant topics. Most of the solutions for the word sense disambiguation problem rely on knowledge base systems. Unfortunately, it is expensive and time-consuming to manually create a knowledge base system, resulting in a knowledge acquisition bottleneck. To solve the knowledge-acquisition bottleneck, a topic signature is used to disambiguate words. In this paper, we evaluate the effectiveness of various features of newspapers on the topic signature extraction for word sense discrimination in tweets. Based on our results, topic signatures obtained from a snippet feature exhibit higher accuracy in discriminating company names than those from the article body. We conclude that topic signatures extracted from news articles improve the accuracy of word sense discrimination in the automated analysis of tweets.

Segmentation by Contour Following Method with Directional Angle

  • Na, Cheol-Hun;Kim, Su-Yeong;Kang, Seong-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.874-877
    • /
    • 2012
  • This paper proposes the new method based on contour following method with directional angle to segment the cell into the nuclei. The object image was the Thyroid Gland cell image that was diagnosed as normal and abnormal(two types of abnormal : follicular neoplastic cell, and papillary neoplastic cell), respectively. The nuclei were successfully diagnosed as normal and abnormal. this paper, improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the Thyroid Gland cell image with difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a result of experiment using features proposed in this paper, get a better segmentation rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells. The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF

Offline Handwritten Numeral Recognition Using Multiple Features and SVM classifier

  • Kim, Gab-Soon;Park, Joong-Jo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.526-534
    • /
    • 2015
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by local shrinking and expanding operations, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where the concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our scheme is tested by recognition experiments on the handwritten numeral database CENPARMI, where SVM classifier with RBF kernel is used. The experimental results show the usefulness of our scheme and recognition rate of 99.10% is achieved.

The Study for Advancing the Performance of Speaker Verification Algorithm Using Individual Voice Information (개별 음향 정보를 이용한 화자 확인 알고리즘 성능향상 연구)

  • Lee, Je-Young;Kang, Sun-Mee
    • Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.253-263
    • /
    • 2002
  • In this paper, we propose new algorithm of speaker recognition which identifies the speaker using the information obtained by the intensive speech feature analysis such as pitch, intensity, duration, and formant, which are crucial parameters of individual voice, for candidates of high percentage of wrong recognition in the existing speaker recognition algorithm. For testing the power of discrimination of individual parameter, DTW (Dynamic Time Warping) is used. We newly set the range of threshold which affects the power of discrimination in speech verification such that the candidates in the new range of threshold are finally discriminated in the next stage of sound parameter analysis. In the speaker verification test by using voice DB which consists of secret words of 25 males and 25 females of 8 kHz 16 bit, the algorithm we propose shows about 1% of performance improvement to the existing algorithm.

  • PDF

Using Higher Order Neuron on the Supervised Learning Machine of Kohonen Feature Map (고차 뉴런을 이용한 교사 학습기의 Kohonen Feature Map)

  • Jung, Jong-Soo;Hagiwara, Masafumi
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.277-282
    • /
    • 2003
  • In this paper we propose Using Higher Order Neuron on the Supervised Learning Machine of the Kohonen Feature Map. The architecture of proposed model adopts the higher order neuron in the input layer of Kohonen Feature Map as a Supervised Learning Machine. It is able to estimate boundary on input pattern space because or the higher order neuron. However, it suffers from a problem that the number of neuron weight increases because of the higher order neuron in the input layer. In this time, we solved this problem by placing the second order neuron among the higher order neuron. The feature of the higher order neuron can be mapped similar inputs on the Kohonen Feature Map. It also is the network with topological mapping. We have simulated the proposed model in respect of the recognition rate by XOR problem, discrimination of 20 alphabet patterns, Mirror Symmetry problem, and numerical letters Pattern Problem.

Structural Quality Defect Discrimination Enhancement using Vertical Energy-based Wavelet Feature Generation (구조물의 품질 결함 변별력 증대를 위한 수직 에너지 기반의 웨이블릿 Feature 생성)

  • Kim, Joon-Seok;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.2
    • /
    • pp.36-44
    • /
    • 2008
  • In this paper a novel feature extraction and selection is carried out in order to improve the discriminating capability between healthy and damaged structure using vibration signals. Although many feature extraction and selection algorithms have been proposed for vibration signals, most proposed approaches don't consider the discriminating ability of features since they are usually in unsupervised manner. We proposed a novel feature extraction and selection algorithm selecting few wavelet coefficients with higher class discriminating capability for damage detection and class visualization. We applied three class separability measures to evaluate the features, i.e. T test statistics, divergence, and Bhattacharyya distance. Experiments with vibration signals from truss structure demonstrate that class separabilities are significantly enhanced using our proposed algorithm compared to other two algorithms with original time-based features and Fourier-based ones.

System Implementation of Paper Currency Discrimination by Using Integrated Image Features (통합 영상 특징에 의한 지폐 분류 시스템의 구현)

  • Gang, Hyeon-In;Choe, Tae-Wan
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, we implemented a real-time system improving the performance of the paper currency discrimination by integrating a weighted region of interest matching algorithm with a weighted shape feature matching algorithm of the blocked image. The system classifies the paper currency by comparing a query image with compared images based on the database that contain images of paper currency. Especially, the system has good efficiency at the contaminated, rotated, and translated paper currency. The system hardware consists of three parts as follows : the paper currency image acquired by CIS(contact image sensor) is applied to the pre-processing part with A/D converter and PLD. Finally the pre-processed image data are classified by the main image processing part with a high-speed DSP based on the proposed algorithm.

Image Analysis for Discrimination of Neoplastic Cellis in Spatial Frequency Domain (종양세포식별을 위한 공간주파수영역에서의 화상해석)

  • 나철훈;김창원;김현재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.3
    • /
    • pp.385-396
    • /
    • 1993
  • In this paper, a improved method of digital image analysis required in basic medical science for diagnosis of cells was proposed. The object image was the thyroid gland cell image, and the purpose was automatic discrimination of three classes cells(normal cell, follicular neoplastic cells, and papillary neoplastic cells) by difference of chromatin patterns. To segment the cell nucleus from background, the region segmentation algorithm by edge tracing was proposed. And feature parameter was obtained from discrete Fourier transformation of image. After construct a feature sample group of each cells, experiment of discrimination was executed with any verification cells. As a consequency of using features proposed in this paper, get a better recognition rate(70-90%) than previously reported papers, and this method give shape to get objectivity and fixed quantity in diagnosis of cells, The methods described in this paper be used immediately for discrimination of neoplastic cells.

  • PDF