• Title/Summary/Keyword: Feasible region

Search Result 208, Processing Time 0.027 seconds

Dominance, Potential Optimality, and Strict Preference Information in Multiple Criteria Decision Making

  • Park, Kyung-Sam;Shin, Dong-Eun
    • Management Science and Financial Engineering
    • /
    • v.17 no.2
    • /
    • pp.63-84
    • /
    • 2011
  • The ordinary multiple criteria decision making (MCDM) approach requires two types of input, alternative values and criterion weights, and employs two schemes of alternative prioritization, dominance and potential optimality. This paper allows for incomplete information on both types of input and gives rise to the dominance relationships and potential optimality of alternatives. Unlike the earlier studies, we emphasize that incomplete information frequently takes the form of strict inequalities, such as strict orders and strict bounds, rather than weak inequalities. Then the issues of rising importance include: (1) The standard mathematical programming approach to prioritize alternatives cannot be used directly, because the feasible region for the permissible decision parameters becomes an open set. (2) We show that the earlier methods replacing the strict inequalities with weak ones, by employing a small positive number or zeroes, which closes the feasible set, may cause a serious problem and yield unacceptable prioritization results. Therefore, we address these important issues and develop a useful and simple method, without selecting any small value for the strict preference information. Given strict information on both types of decision parameters, we first construct a nonlinear program, transform it into a linear programming equivalent, and finally solve it via a two-stage method. An application is also demonstrated herein.

Development of Numerical Analysis and Optimization AIgorithms for Orthotropic Continuous Curved Floor Slab Systems (이방성 연속 곡평면 슬래브 시스템의 수치해석과 최적화 알고리즘의 개발)

  • Park, Moon Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.1-15
    • /
    • 1992
  • A Practical and easily applicable methods for the numerical analysis and the optimum design of continuous and horizontally curved two-way slab systems with twelve possible edge conditions are presented. The proposed method for the numerical structural analysis is based on the use of design moment coefficients which are derived from the elastic theory of thin curved plates. The optimum values are selected from within the feasible region in the design space defined by the limit state requirements. The sequential linear programming is introduced as an analytical method of nonlinear optimization. The optimum design variables, including a effective depth and transformed steel ratios per unit width of middle and column strips of slabs, are then determined.

  • PDF

Effectiveness Analysis of Alternatives to Rehabilitate the Distorted hydrologic Cycle in the Anyangcheon Watershed using HSPF (HSPF 모형을 이용한 안양천 유역의 물순환 건전화 대안기술 효과분석)

  • Chung, Eun-Sung;Lee, Joon-Seok;Lee, Kil Seong;Kim, Sang-Ug;Kim, Kyung-Tae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.973-984
    • /
    • 2007
  • This study developed and calculated alternative evaluation index (AEI) from the effectiveness analyses of alternatives for rehabilitation of distorted hydrologic cycle. The feasible alternatives for the poor-conditioned region in the Anyangcheon watershed were proposed and quantitatively analyzed using continuous water quantity/quality simulation model, Hydrological Simulation Program-Fortran (HSPF). The effectiveness analyses include 355th flow and 275th flow of flow duration curve and number of increased days to satisfy the target monthly flow for water quantity and BOD average concentration, total daily loads and number of increased days to satisfy the target concentration and total daily loads. The feasible alternatives are restoration of covered stream, prevention of streamflow loss through sewers, redevelopment of existing reservoir, reuse of treated wastewater, use of groundwater collected by subway stations and construction of small wastewater treatment plant. Therefore, alternative priority ranking was derived from AEIs. It will be effective to make an integrated watershed management for sustainable development.

Wide band prototype feedhorn design for ASTE focal plane array

  • Lee, Bangwon;Gonzales, Alvaro;Lee, Jung-won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2016
  • KASI and NAOJ are making collaborating efforts to implement faster mapping capability into the new 275-500 GHz Atacama Submillimeter Telescope Experiment focal plane array (FPA). Feed horn antenna is one of critical parts of the FPA. Required fractional bandwidth is almost 60 % while that of traditional conical horn is less than 50 %. Therefore, to achieve this wideband performance, we adopted a horn of which the corrugation depths have a longitudinal profile. A profiled horn has features not only of wide bandwidth but also of shorter length compared to a linear-tapered corrugated horn, and lower cost fabrication with less error can be feasible. In our design process the flare region is represented by a cubic splined curve with several parameters. Parameters of the flare region and each dimension of the throat region are optimized by a differential evolution algorithm to keep >20 dB return loss and >30 dB maximum cross-polarization level over the operation bandwidth. To evaluate RF performance of the horn generated by the optimizer, we used a commercial mode matching software, WASP-NET. Also, Gaussian beam (GB) masks to far fields were applied to give better GB behavior over frequencies. The optimized design shows >23 dB return loss and >33 dB maximum cross-polarization level over the whole band. Gaussicity of the horn is over 96.6 %. The length of the horn is 12.5 mm which is just 57 % of the ALMA band 8 feed horn (21.96 mm).

  • PDF

A method of minimum-time trajectory planning ensuring collision-free motion for two robot arms

  • Lee, Jihong;Bien, Zeungnam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.990-995
    • /
    • 1990
  • A minimum-time trajectory planning for two robot arms with designated paths and coordination is proposed. The problem considered in this paper is a subproblem of hierarchically decomposed trajectory planning approach for multiple robots : i) path planning, ii) coordination planning, iii) velocity planning. In coordination planning stage, coordination space, a specific form of configuration space, is constructed to determine collision region and collision-free region, and a collision-free coordination curve (CFCC) passing collision-free region is selected. In velocity planning stage, normal dynamic equations of the robots, described by joint angles, velocities and accelerations, are converted into simpler forms which are described by traveling distance along collision-free coordination curve. By utilizing maximum allowable torques and joint velocity limits, admissible range of velocity and acceleration along CFCC is derived, and a minimum-time velocity planning is calculated in phase plane. Also the planning algorithm itself is converted to simple numerical iterative calculation form based on the concept of neural optimization network, which gives a feasible approximate solution to this planning problem. To show the usefulness of proposed method, an example of trajectory planning for 2 SCARA type robots in common workspace is illustrated.

  • PDF

Slotted ALOHA Based Greedy Relay Selection in Large-scale Wireless Networks

  • Ouyang, Fengchen;Ge, Jianhua;Gong, Fengkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3945-3964
    • /
    • 2015
  • Since the decentralized structure and the blindness of a large-scale wireless network make it difficult to collect the real-time channel state or other information from random distributed relays, a fundamental question is whether it is feasible to perform the relay selection without this knowledge. In this paper, a Slotted ALOHA based Greedy Relay Selection (SAGRS) scheme is presented. The proposed scheme allows the relays satisfying the user's minimum transmission request to compete for selection by randomly accessing the channel through the slotted ALOHA protocol without the need for the information collection procedure. Moreover, a greedy selection mechanism is introduced with which a user can wait for an even better relay when a suitable one is successfully stored. The optimal access probability of a relay is determined through the utilization of the available relay region, a geographical region consisting of all the relays that satisfy the minimum transmission demand of the user. The average number of the selection slots and the failure probability of the scheme are analyzed in this paper. By simulations, the validation and the effectiveness of the SAGRS scheme are confirmed. With a balance between the selection slots and the instantaneous rate of the selected relay, the proposed scheme outperforms other random access selection schemes.

Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor

  • Chai, Hongxiang;Li, Liang;Wei, Yinghua;Zhou, Jian;Kang, Wei;Shao, Zhiyu;He, Qiang
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Membrane bioreactor (MBR) technology has previously been used by water industry to treat high salinity wastewater. In this study, an anoxic-oxic biofilm-membrane bioreactor (AOB-MBR) system has been developed to treat mustard tuber wastewater of 10% salinity (calculated as NaCl). To figure out the effects of operating conditions of the AOB-MBR on membrane fouling rate ($K_V$), response surface methodology was used to evaluate the interaction effect of the three key operational parameters, namely time interval for pump (t), aeration intensity ($U_{Gr}$) and transmembrane pressure (TMP). The optimal condition for lowest membrane fouling rate ($K_V$) was obtained: time interval was 4.0 min, aeration intensity was $14.6 m^3/(m^2{\cdot}h)$ and transmembrane pressure was 19.0 kPa. And under this condition, the treatment efficiency with different influent loads, i.e. 1.0, 1.9 and $3.3kgCODm^{-3}d^{-1}$ was researched. When the reactor influent load was less than $1.9kgCODm^{-3}d^{-1}$, the effluent could meet the third discharge standard of "Integrated Wastewater Discharge Standard". This study suggests that the model fitted by response surface methodology can predict accurately membrane fouling rate within the specified design space. And it is feasible to apply the AOB-MBR in the pickled mustard tuber factory, achieving satisfying effluent quality.

Potential Benefits of a Selective Region High-frequency Diathermy with Therapeutic Exercises on Older Persons with Degenerative Knee Osteoarthritis: A Case Report

  • Ha, Sin Ho;Lee, Dong Geon;Hong, Soung Kyun;Lee, Gyu Chang
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.4
    • /
    • pp.387-397
    • /
    • 2021
  • Objective: The purpose of this case study was to investigate selective region high-frequency diathermy at trigger points with therapeutic exercises on pain, function, balance and gait in older patients with degenerative knee osteoarthritis (DKO). Design: A case report. Methods: The patient who participated in this study was a 71-year-old woman, who had been diagnosed with moderate osteoarthritis with grade II Kellgren & Lawrence grading scale. The intervention consisted of selective region high-frequency diathermy at trigger points, with hip and knee stretching and strengthening exercises. The participant was given assessments before and after every intervention session using the Visual Analogue Scale (VAS), Western Ontario and McMaster Universities Arthritis Index (WOMAC), the Timed Up and Go test (TUG) and the 10 Meter Walk Test (10MWT). The participant performed the intervention 18 times for a total of 30 minutes each. Results: As a result of this study, the patient VAS decreased to 3 points, and the WOMAC decreased to 53 points. In addition, the TUG decreased to 3.25 s and the 10MWT decreased to 1.14 s. Conclusions: The results of this study suggest that selective region high-frequency diathermy at trigger points with therapeutic exercises may be an effective intervention to decrease pain, improve knee function, balance and gait in patients with DKO. The selective region high-frequency diathermy with therapeutic exercises may be feasible and provide potential benefits for rehabilitation of DKO.

Facial Local Region Based Deep Convolutional Neural Networks for Automated Face Recognition (자동 얼굴인식을 위한 얼굴 지역 영역 기반 다중 심층 합성곱 신경망 시스템)

  • Kim, Kyeong-Tae;Choi, Jae-Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.47-55
    • /
    • 2018
  • In this paper, we propose a novel face recognition(FR) method that takes advantage of combining weighted deep local features extracted from multiple Deep Convolutional Neural Networks(DCNNs) learned with a set of facial local regions. In the proposed method, the so-called weighed deep local features are generated from multiple DCNNs each trained with a particular face local region and the corresponding weight represents the importance of local region in terms of improving FR performance. Our weighted deep local features are applied to Joint Bayesian metric learning in conjunction with Nearest Neighbor(NN) Classifier for the purpose of FR. Systematic and comparative experiments show that our proposed method is robust to variations in pose, illumination, and expression. Also, experimental results demonstrate that our method is feasible for improving face recognition performance.

Concrete Optimum Mixture Proportioning Based on a Database Using Convex Hulls (최소 볼록 집합을 이용한 데이터베이스 기반 콘크리트 최적 배합)

  • Lee, Bang-Yeon;Kim, Jae-Hong;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.627-634
    • /
    • 2008
  • This paper presents an optimum mixture design method for proportioning a concrete. In the proposed method, the search space is constrained as the domain defined by the minimal convex region of a database, instead of the available range of each component and the ratio composed of several components. The model for defining the search space which is expressed by the effective region is proposed. The effective region model evaluates whether a mix-proportion is effective on processing for optimization, yielding highly reliable results. Three concepts are adopted to realize the proposed methodology: A genetic algorithm for the optimization; an artificial neural network for predicting material properties; and a convex hull for evaluating the effective region. And then, it was applied to an optimization problem wherein the minimum cost should be obtained under a given strength requirement. Experimental test results show that the mix-proportion obtained from the proposed methodology using convex hulls is found to be more accurate and feasible than that obtained from a general optimum technique that does not consider this aspect.