• Title/Summary/Keyword: Fe-based powders

Search Result 92, Processing Time 0.032 seconds

Hardness and Corrosion Resistance of Surface Composites Fabricated with Fe-based Metamorphic Powders by High-energy Electron Beam Irradiation

  • Nam, Dukhyun;Lee, Kyuhong;Lee, Sunghak;Young, Kyoo
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.301-306
    • /
    • 2008
  • Surface composite layers of 1.9~2.9 mm in thickness were fabricated by depositing metamorphic powders on a carbon steel substrate and by irradiating with a high-energy electron beam. In the surface composite layers, 48~64 vol.% of $Cr_{2}B$ or $Cr_{1.65}Fe_{0.35}B_{0.96}$ borides were densely precipitated in the austenite or martensite matrix. These hard borides improved the hardness of the surface composite layer. According to the otentiodynamic polarization test results of the surface composites, coatings, STS304 stainless steel, and carbon steel substrate, the corrosion potential of the surface composite fabricated with 'C+' powders was highest, and its corrosion current density was lowest, while its pitting potential was similar to that of the STS304 steel. This indicated that the overall corrosion resistance of the surface composite fabricated with 'C+' powders was the best among the tested materials. Austenite and martensite phases of the surface composites and coatings was selectively corroded, while borides were retained inside pits. In the coating fabricated with 'C+' powders, the localized corrosion additionally occurred along splat boundaries, and thus the corrosion resistance of the coating was worse than that of the surface composite.

Fabrication of Ultrafine Tungsten-based Composite Powders by Novel Reduction Process (신공정에 의한 초미립 텅스텐계 복합분말 제조)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.338-342
    • /
    • 2012
  • A novel chemical method was evaluated to fabricate the ultrafine tungsten heavy alloy powders with bater-base solution made from the ammonium metatungstate (AMT), iron(II) chloride tetrahydrate ($FeCl_2{\cdot}4H_2O$), nickel(II) chloride hexahydrate ($NiCl_2{\cdot}6H_2O$) as source materials and the sodium tungstate dihydrate ($NaWO_4{\cdot}2H_2O$) as Cl-reductant. In the preparation of mixtures the amounts of the source components were chosen so as to obtain alloy of 93W-5Ni-2Fe composition(wt.%). The obtained powders were characterized by X-ray diffraction, XRF, field-emission scanning microscope (FESEM), and chemical composition was analyzed by EDX.

Preparation of gas-atomized Fe-based alloy powders and HVOF sprayed coatings

  • Chau, Joseph Lik Hang;Pan, Alfred I-Tsung;Yang, Chih-Chao
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.343-348
    • /
    • 2017
  • High-pressure gas atomization was employed to prepare the Fe-based $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ alloy powder. The effect of flow rate of atomizing gas on the median powder diameter was studied. The results show that the powder size decreased with increasing the flow rate of atomizing gas. Fe-based alloy coatings with amorphous phase fraction was then prepared by high velocity oxygen fuel spraying (HVOF) of gas atomized $Fe_{50}Cr_{24}Mo_{21}Si_2B_3$ powder. Microstructural studies show that the coatings present dense layered structure and low porosity of 0.17% in about $200{\mu}m$ thickness. The Fe-based alloy coating exhibits an average hardness of about 1230 HV. Our results show that the HVOF process results in dense and well-bonded coatings, making it attractive for protective coatings applications.

Preparation of Pb(Fe1/2Nb1/2)O3 Powders by Supercritical Fluid Method (초임계 유체법을 이용한 Pb(Fe1/2Nb1/2)O3분말 제조)

  • 임대영;김병규;최근목;홍석형;김태훈
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.566-569
    • /
    • 2002
  • In general, Pb-based complex perovskite powders have not been directly prepared because pyrochlore that is secondary phase appears. In this study, we tried to prepare Pb(Fe$_{1}$2/Nb$_{1}$2/)O$_3$ which was used to the electronic multicomponent by supercitical fluid method in order to fabricate very active powder not through pyrochlore.

A Study on the Fabrication of Lithium Iron Oxide Electrode and its Cyclic Voltammetric Characteristics (리튬-철 산화물 전극의 제조 및 전류전위 순환 특성에 관한 연구)

  • Jeong Won-Joong;Ju Jeh-Beck;Sohn Tai-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.156-162
    • /
    • 1999
  • Various types of iron oxide based materials as a cathode of lithium secondary battery have been prepared and their electrochemical characteristics have been also observed. In order to understand the fundamental characteristics of iron oxide electrode, three kinds of iron oxides such as iron oxides formed by direct oxidation of iron plate or iron powders and FeOOH powders were tested with cyclic voltammetry. The oxidation and reduction peaks due to the reaction of intercalation and deintercalation were not observed for the iron oxide prepared with iron plate and FeOOH powders. In case of iron oxide prepared from iron powders, only one reduction peak was observed. A layered form of $LiFeO_2$ was synthesized directly from $FeCl_3\cdot6H_2O,\;NaOH\;and\;LiOH$ and LiOH by hydrothermal reaction. The effect of NaOH on the electrode performance was examined. When increasing NaOH, it provides the electrode with less discharge capacity and efficiency, however, decreasing rate of discharge capacity became smaller. $LiFeO_2$ synthesized with the molar ratio of $NaOH/FeCl_3/LiOH$, 2/1/7 showed the largest capacity, but the discharging efficiency was sharply decreased after 30 cycles.

Magnetic Properties of Nylon 6 based Nd-Fe-Co-Zr-B Pellets for Injection Molding (사출성형용 Nylon 6계 Nd-Fe-Co-Zr-B 펠렛의 자기특성)

  • 최승덕;이우영;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.34-40
    • /
    • 1993
  • Nylon 6 based magnetic pellets for injection molding were produced using plasma arc melt-spun $Nd_{10.5}Fe_{79}Co_{2}Zr_{1.5}B_{7}$ powders. Two sorts of bonded magnets made of two different sizes of particles ($38~75\;\mu\textrm{m}$ and $75~150\;\mu\textrm{m}$) were prepared to determine critical volume fraction of magnet powders, and the magnetic prop erties of the magnets were discussed as a function of density. For the nylon fi based Nd-Fe-Co-Zr-B pellets made of $38~75\;\mu\textrm{m}$ particles, the critical volume fraction of powders 0.7 was obtained with the pellet density which is 90% of theoretical density while the magnets of $75~150\;\mu\textrm{m}$ showed the density of 87% of the theoretical value with the same volume fraction. The nylon (i magnets with the addition of 0.5 wt. % silicon oil only exhibited the best magnetic properties to have $_{i}H_{c}=8.8\;kOe,\;B_{r}=5.1\;kG$ and $(BH)_{max}=5.2\;MGOe$ which are of world class. An empirical relationship in predicting the magnet density with a known fraction ($V_s$) of loading powders was obtained such as ${\rho}(g/cm^{3})=1.1+K.V_{s}$ where the K ranges over 5.3~5.6 be ing dependent upon the particle size loaded.

  • PDF

Photocatal~ic Hydrogen Evolution with Platinum Loaded Cadmium-Iron-Sulfide Mixed Crystal Powders in Aque-ous Media

  • Jo, Cheol Rae;Park, Se Jin;Kim, Ha Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.805-808
    • /
    • 2000
  • Mixed crystal powders based on Cd,Fe, and S have been synthesized by varying the ratio of CdS and $FeS_2in$ order to find a suitable material usefuI for the effectivc conversion of solar energy. Hydrogen gas was evolved only with CdS/Ptby photocatal ytic reaction under white light in an aqueous 1 M sodiumsulfite solution. From electrochemical studies of semiconductor electrodes. itwas shown that the onset potential shifted to the positive direction and that the bandgap energy also decreased as the molar ratio of Fe increased. A hydrogen evolution mechanism in terms of the conduction band potential and hydrogen evolution potential is proposed.

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

Electromagnetic Wave Absorption Properties in Fe-based Nanocrystalline P/M Sheets with Carbon Black and BaTiO3 Additives

  • Kim, Mi-Rae;Park, Won-Wook
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • In order to increase the magnetic loss for electromagnetic(EM) wave absorption, the soft magnetic $Fe_{73}Si_{16}B_7Nb_3Cu_1$(at%) alloy strip was used as the basic material in this study. The melt-spun strip was pulverized using an attrition mill, and the pulverized flake-shaped powder was crystallized at $540^{\circ}C$ for 1h to obtain the optimum grain size. The Fe-based powder was mixed with 2 wt% $BaTiO_3$, $0.3{\sim}0.6$ wt% carbon black, and polymer-based binders for the improvement of electromagnetic wave absorption properties. The mixture powders were tape-cast and dried to form the absorption sheets. After drying at $100^{\circ}C$ for 1h, the sheets of 0.5 mm in thickness were made by rolling at $60^{\circ}C$, and cut into toroidal shape to measure the absorption properties of samples. The characteristics including permittivity, permeability and power loss were measured using a Network Analyzer(N5230A). Consequently, the properties of electromagnetic wave absorber were improved with the addition of both $BaTiO_3$ and carbon black powder, which was caused by the increased dielectric loss of the additive powders.

An Investigation of the Stability of Y2O3 and Sintering Behavior of Fe-Based ODS Particles Prepared by High Energy Ball Milling

  • Park, Eun-Kwang;Hong, Sung-Mo;Park, Jin-Ju;Lee, Min-Ku;Rhee, Chang-Kyu;Seol, Kyeong-Won
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.275-279
    • /
    • 2013
  • Fe-based oxide dispersion strengthened (ODS) powders were produced by high energy ball milling, followed by spark plasma sintering (SPS) for consolidation. The mixed powders of 84Fe-14Cr-$2Y_2O_3$ (wt%) were mechanically milled for 10 and 90 mins, and then consolidated at different temperatures ($900{\sim}1100^{\circ}C$). Mechanically-Alloyed (MAed) particles were examined by means of cross-sectional images using scanning electron microscopy (SEM). Both mechanical alloying and sintering behavior was investigated by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HR-TEM). To confirm the thermal behavior of $Y_2O_3$, a replica method was applied after the SPS process. From the SEM observation, MAed powders milled for 10 min showed a lamella structure consisting of rich regions of Fe and Cr, while both regions were fully alloyed after 90 min. The results of sintering behavior clearly indicate that as the SPS temperature increased, micro-sized defects decreased and the density of consolidated ODS alloys increased. TEM images revealed that precipitates smaller than 50 nm consisted of $YCrO_3$.