• Title/Summary/Keyword: Fe-based powders

Search Result 92, Processing Time 0.028 seconds

Novel process of rare-earth free magnet and thermochemical route for the fabrication of permanent magnet

  • Choi, Chul-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.89-89
    • /
    • 2013
  • Rare earth (RE) - transition metal based high energy density magnets are of immense significance in various engineering applications. $Nd_2Fe_{14}B$ magnets possess the highest energy product and are widely used in whole industries. Simultaneously, composite alloys that are cheap, cost effective and strong commercially available have drawn great attention, because rare-earth metals are costly, less abundant and strategic shortage. We designed rare-earth free alloys and fabrication process and developed novel route to prepare $Nd_2Fe_{14}B$ powders by wet process employing spray drying and reduction-diffusion (R-D) without the use of high purity metals as raw material. MnAl-base permanent magnetic powders are potentially important material for rare-earth free magnets. We have prepared the nano-sized MnAl powders by plasma arc discharge and micron-sized MnAl powders by gas atomization. They showed good magnetic property, compared with that from conventional processes. $Nd_2Fe_{14}B$ powders with high coercivity of more than 10 kOe were successfully synthesized by adjusting R-D step, followed by precise washing system. It is considered that this process can be applied for the recycling of RE-elements extracted from ewaste including motors.

  • PDF

Microstructural Characterization of Gas Atomized Copper-Iron Alloys with Composition and Powder Size

  • Abbas, Sardar Farhat;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.19-24
    • /
    • 2018
  • Cu-Fe alloys (CFAs) are much anticipated for use in electrical contacts, magnetic recorders, and sensors. The low cost of Fe has inspired the investigation of these alloys as possible replacements for high-cost Cu-Nb and Cu-Ag alloys. Here, alloys of Cu and Fe having compositions of $Cu_{100-x}Fe_x$ (x = 10, 30, and 50 wt.%) are prepared by gas atomization and characterized microstructurally and structurally based on composition and powder size with scanning electron microscopy (SEM) and X-ray diffraction (XRD). Grain sizes and Fe-rich particle sizes are measured and relationships among composition, powder size, and grain size are established. Same-sized powders of different compositions yield different microstructures, as do differently sized powders of equal composition. No atomic-level alloying is observed in the CFAs under the experimental conditions.

Crystallographic and magnetic properties of (CoFe2O4)1-X(Y3Fe5O12)X ((CoFe2O4)1-X(Y3Fe5O12)X 분말의 구조적 특성과 자기적 특성)

  • Lee, Jae-Gwang;Chae, Kwang-Pyo;Jang, Joon-Sik;Lee, Sung-Ho;Lee, Yong-Bae
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Magnetic and structural properties of $(CoFe_2O_4)_{1-x}(Y_3Fe_5O_{12})_x$ powders (0 $\leq$ x $\leq$ 1) grown by a conventional ceramic method were investigated using X-ray diffractormeter (XRD), scanning electron microscopy (SEM), Mossbauer spectroscopy and vibrating sample magnetometer (VSM). The XRD results for the powders annealed at 120$0^{\circ}C$ indicated that no other peak was observed except for the ones from cobalt ferrite and the garnet powder. SEM micrographs indicated that cobalt ferrite and garnet powders were aggregated and completely formed together. It was hard to identify which part of the powders was the garnet or the cobalt ferrite. Mossbauer spectra for powders grown separately and mixed mechanically consisted of sub-spectra of cobalt ferrite and garnet, however, powders annealed together had an extra sub-spectrum, which was related with the interaction between iron ions at the grain surfaces of cobalt ferrite and the garnet: cobalt ferrite and garnet particles were located very closely. The value of the saturation magnetization measured by a VSM as a function of composition ratio agreed very well with the ones based on the theoretical calculation.

Exchange Coupling in Massively Produced Nd2Fe14B+Fe3B Nanocomposite Powders

  • Yang, Choong Jin;Park, Eon Byung;Han, Jong Soo;Kim, Eung Chan
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • Magnetic properties of $Nd_4Fe_{77.5}B_{18.5}$ compound in term of exchange coupling between $Nd_2Fe_{14}B$ and $Fe_3B$ magnetic nano crystals in melt spun powders were characterized by varying the quenching speed in mass production line. The exchange coupled phenomenon was characterized as functions of nano crystal size and volume fraction of each magnetic phase which was possible by employing Henkel plot (${\delta}M$) and refined Mossbauer spectroscopy. The optimized magnetic properties obtained from the present volume production line were: $B_r= 11.73 kG,{_i}H_c/ = 3.082 kOe$, and $(BH)_{max} = 12.28 MGOe.$ The volume fraction of each magnetic phase for those conditions giving the grain size of 10 nm were ${\alpha}-Fe; 4.2%, Fe_3B; 60.1 %$, and $Nd_2Fe_{14}B; 35.7%$. The superior magnetic properties in the $Nd_2Fe_{14}Fe_3B$ based nanocomposites were confirmed to be dependant on the volume fraction of $Fe_3B$.

Magnetic Properties of Amorphous FeCrSiBC Alloy Powder Cores Using Phosphate-coated Powders

  • Jang, Dae-Ho;Kim, Kwang-Youn;Noh, Tae-Hwan
    • Journal of Magnetics
    • /
    • v.11 no.3
    • /
    • pp.126-129
    • /
    • 2006
  • The phosphate coating on the $(Fe_{0.97}Cr_{0.03})_{76}(Si_{0.5}B_{0.5})_{22}C_2$ amorphous powders with an average size of 10 ${\mu}m$ in diameter has been carried out in aqueous 1.0-2.0 wt% $H_3PO_4$ solutions, and the consolidation behavior and magnetic properties of their compressed powder cores has been investigated. The phosphate coating could provide efficient electrical insulation between amorphous powders and improved consolidation ability at room temperature. Especially when the powders were treated in more concentrated phosphoric acid solution, enhanced phosphate covering and higher frequency/dc-bias stability were achieved. The powder cores phosphate-coated in 2.0 wt% $H_3PO_4$ solution exhibited constant permeability of 21 up to 10 MHz, 110 of the quality factor at 0.9 MHz, 610 mW/cm3 core loss at 100 kHz/0.1 T and 89 of percent permeability at 100 kHz.

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Fabrication of Fe coated Mg Based Desulfurization Powder by Mechanical Alloying Process (기계적 합금화 공정에 의한 Fe가 코팅된 Mg 탈황 분말 제조 연구)

  • Song, Joon-Woo;Guillermo, Otaduy;Chun, Byong-Sun;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2012
  • In this research, the coating behavior of Mg and Fe desulfurization powder fabricated by low energy and conventional planetary mill equipment was investigated as a function of milling time, which produces uniform Fe coated powders due to milling energy. Since high energy ball milling results in breaking the Fe coated Mg powders into coarse particles, low energy ball milling was considered appropriate for this study, and can be implemented in desulfurization industry widely. XRD and FE-SEM analyses were carried out to investigate the microstructure and distribution of the coating material. The thickness of the Fe coating layer reaches a maximum of 14 ${\mu}m$ at 20 milling hours. The BCC structures of Fe particles are deformed due to the slip system of Fe coated Mg particles.

Electromagnetic Wave Absorption Properties of Fe-based Nanocrystalline P/M sheets with Al2O3 additive (Al2O3 첨가에 따른 Fe계 나노결정립 P/M시트의 전자파 흡수특성)

  • Woo, S.J.;Cho, E.K.;Cho, H.J.;Lee, J.J.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.265-271
    • /
    • 2007
  • Electromagnetic wave absorbing materials have been developed to reduce electromagnetic interference (EMI) for electronic devices in recent years. In this study, Fe-Si-B-Nb-Cu base amorphous strip was pulverized using a jet mill and an attritor and heat-treated to get flake-shaped nanocrystalline powders, and then the powders were mixed, cast and dried with dielectric $Al_{2}O_{3}$ powders and binders. As a result, the addition of $Al_{2}O_{3}$ powders improved the absorbing properties of the sheets noticeably compared with those of the sheets without dielectric materials. The sheet mixed with 2 wt% $Al_{2}O_{3}$ powder showed the best electromagnetic wave absorption, which was caused by the increase of the permittivity and the electric resistance due to the dielectric materials finely dispersed on the Fe-based powder.

The Influence of Dehydrogenation Speed on the Microstructure and Magnetic Properties of Nd-Fe-B Magnets Prepared by HDDR Process

  • Cha, Hee-Ryoung;Yu, Ji-Hun;Baek, Youn-Kyoung;Kwon, Hae-Woong;Kim, Yang-Do;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • The influence regarding the dehydrogenation speed, at the desorption-recombination state during the hydrogenation-disproportionation-desorption-recombination (HDDR) process, on the microstructure and magnetic properties of Nd-Fe-B magnetic powders has been studied. Strip cast Nd-Fe-B-based alloys were subjected to the HDDR process after the homogenization heat treatment. During the desorption-recombination stage, both the pumping speed and time of hydrogen were systematically changed in order to control the speed of the desorption-recombination reaction. The magnetic properties of HDDR powders were improved as the pumping speed of hydrogen at the desorption-recombination stage was decreased. The lower pumping speed resulted in a smaller grain size and higher DoA. The coercivity and the remanence of the 200-300 ${\mu}m$ sized HDDR powder increased from 12.7 to 14.6 kOe and from 8.9 to 10.0 kG, respectively. In addition, the remanence was further increased to 11.8 kG by milling the powders down to about 25-90 ${\mu}m$, resulting in $(BH)_{max}$ of 28.8 MGOe.

Microstructure and Mechanical Properties of Al2O3/Fe-Ni Nanocomposite Prepared by Rapid Sintering (급속소결에 의해 제조된 Al2O3/Fe-Ni 나노복합재료의 미세조직 및 기계적 특성)

  • Lee, Young-In;Lee, Kun-Jae;Jang, Dae-Hwan;Yang, Jae-Kyo;Cho, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • A new High Frequency Induction Heating (HFIH) process has been developed to fabricate dense $Al_2O_3$ reinforced with Fe-Ni magnetic metal dispersion particles. The process is based on the reduction of metal oxide particles immediately prior to sintering. The synthesized $Al_2O_3$/Fe-Ni nanocomposite powders were formed directly from the selective reduction of metal oxide powders, such as NiO and $Fe_2O_3$. Dense $Al_2O_3$/Fe-Ni nanocomposite was fabricated using the HFIH method with an extremely high heating rate of $2000^{\circ}C/min$. Phase identification and microstructure of nanocomposite powders and sintered specimens were determined by X-ray diffraction and SEM and TEM, respectively. Vickers hardness experiment were performed to investigate the mechanical properties of the $Al_2O_3$/Fe-Ni nanocomposite.