• Title/Summary/Keyword: Fe-SEM

Search Result 2,270, Processing Time 0.032 seconds

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD (MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성)

  • Kim, Y.S.;Song, W.S.;Lee, S.Y.;Choi, W.C.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.

Fabrication and Properties of D-Glass Fiber with Low Dielectric Constant (저유전율을 가지는 D-Glass Fiber의 제조 및 특성)

  • Jeong, Bora;Lee, Ji-Sun;Lee, MiJai;Lim, Tae-Young;Lee, Youngjin;Jeon, Dae-Woo;Shin, Dongwook;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.254-259
    • /
    • 2018
  • General D-glass(Dielectric glass) fibers are adaptable to PCBs(Printed circuit boards) because they have a low dielectric constant of about 3.5~4.5. However, very few papers have appeared on the physical characteristics of D-glass fibers. D-glass fibers were fabricated via continuous spinning process using bulk D-glass. In order to fabricate the D-glass, raw materials were put into a Pt crucible, melted at $1650^{\circ}C$ for 2 hrs, and then annealed at $521{\pm}10^{\circ}C$ for 2 hrs. We obtained transparent clear glass. The transmittance and adaptable temperature for spinning of the bulk marble glass were characterized using a UV-visible spectrometer and a viscometer. Continuous spinning was carried out using direct melting spinning equipment as a function of the fiberizing temperature in the range of $1368^{\circ}C$ to $1460^{\circ}C$, while the winder speed was between 100 rpm and 200 rpm. We investigated the physical properties of the D-glass fibers. The average diameters of the glass fibers were measured by optical microscope and FE-SEM. The average diameters of the D-glass fibers were 21.36 um at 100 rpm and 34.06 um at 200 rpm. The mechanical properties of the fibers were confirmed using a UTM(Universal materials testing machine). The average tensile strengths of the D-glass fibers were 467.03 MPa at 100 rpm and 522.60 MPa at 200 rpm.

Preparation of Solid Dispersions of a Poorly Water-soluble Drug Using Supercritical Fluid (초임계 유체를 이용한 난용성 약물의 고체분산체 제조)

  • Kim, Seok-Yun;Lee, Jung-Min;Jung, In-Il;Lim, Gio-Bin;Ryu, Jong-Hoon
    • KSBB Journal
    • /
    • v.24 no.6
    • /
    • pp.533-540
    • /
    • 2009
  • In this work, 5'-nitroindirubinoxime (5'-NIO) has been prepared as solid dispersions using a supercritical aerosol solvent extraction system (ASES) process in order to enhance its water solubility and dissolution rate. Solid dispersions of 5'-NIO and poly(vinyl pyrrolidone) (PVP) were prepared in various weight percent ratios. Three-component solid dispersions consisting of 5'-NIO, PVP, and poloxamer 188 (P188) were also prepared to study the influence of P188 level on their morphology, crystallinity, and dissolution behavior. All samples were prepared at $35^{\circ}C$ and 180 bar using supercritical carbon dioxide. The particle morphology and size of the two-component solid dispersions were found to be nearly spherical and much smaller (100-200 nm) compared with the original 5'-NIO. The morphology of three-component solid dispersions became more agglomerated as the level of P188 increased. The crystallinity of the original 5'-NIO was not observed in the solid dispersions prepared by the ASES process. Faster dissolution rates were observed for the three-componet solid dispersions because the arrangement of ethylene oxide and propylene oxide blocks of the poloxamer 188 enabled the formation of micelles in an aqueous phase.

Thermoelectric Properties of Rapidly Solidified and extruded N-type $Bi_2Te_{2.85}Se_{0.15}$ alloy with extrusion die angle (급속응고법에 의한 $Bi_2Te_3$계 N형반도체 열전재료의 압출 다이각 변화에 따른 열전특성)

  • 권동진;홍순직;손현택;천병선;이윤석
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2001.11a
    • /
    • pp.29-29
    • /
    • 2001
  • 열전재료는 열전현상을 가지고 있어 열전발전과 열선냉각이 가능하기 때분에 해저용, 우주용, 군사용의 특수 전원으로 이미 실용화되어있고, 반도체, 레이저 다이오드, 적외선 검출소자 등의 냉각기로 쓰여지고 있어 많은 연구자들이 이들 재료에 대한 연구에 관을 갖고 열전특성을 향상시키기 위하여 많은 연구를 진행하고 있다 이들 열전재료는 사용 온도구역에 따라 3종류로 구분하고 있으며, 실온부근의 저온 영역(20$0^{\circ}C$)이하에서는 $Bi_2Te_3$계 재료, 중온영역(20$0^{\circ}C$~50$0^{\circ}C$)에서sms (Pb,Ge) Te계 재료, 고온영역(50$0^{\circ}C$~lOoo$^{\circ}C$)에서는 Si-Ge계 Fe Si계 재료가 이용되고 있다. 본 연구에서는 실온에서 성능지수가 높은 Bi_2(Te,Se)_3$에 대한 연구를 진행하였다. Bi_2(Te,Se)_3$계 열전재료는 기존의 공법인 Zone melting법을 이용하는 경우 성능지수가 높으나, 단위정이 Rhombohedral 구조파 기저면(basal plane)에 벽개성이 있는 관계로 재료의 적지 않은 손실과 가공상의 어려움이 있다. 또한 사료전체에 걸쳐 화학적으로 균질한 고용체를 얻는 것도 어려운 문제점으보 부각되고 있디 따라서 이와같은 문제점을 보완하기 위하여 용질원자의 편석감소, 고용도의 증가, 균일 고용체 형성, 결정립의 미세화등의 장점이 있는 급속응고법을 본 연구에 응용하였다. 본 연구에서는 위에서와 같은 급속응고의 장점과 대량 가공이 능늪한 연간압출공정을 이용하여 제조된 분말을 성형화 하였다. 특히 열간압출 가공에 있어서 압축다이 각 변화는 재료의 소성유동에 매우 중요한 역하을 하게되며, 이와 갇은 소성유동은 본 재료의 열전특성에 중요한 영향을 미치는 C 면 배양에 중요한 역할을 한 것으 로 기대된다. 이에 본 연구에서는 압출다이 각도 변화에 따른 미세조직변화와 이들 조직이 강도와 열전특성에 미치는 영향을 석하고자 한다. 압출재의 미세조직은 XRD(X Ray Diffraction), SEM(Scanning Electron Microscopy)으로 분석하였으며, 열전특성인 Seebeck계수($\alpha$)와 전기비저항( $\rho$ )은 열전측정장치로, 기계적 강도는 MTS장비를 이용하여 이루어졌다. 또한 압축다이각도 변화에 따른 결정방위 해석은 모노크로미터가 장착된 X RD장비감 이용하여 분석되었다.

  • PDF

Analysis on the Textile and Dye Used for the Book Cover and Slipcase Housed in the Oryundae Korean Martyrs Museum (오륜대 한국순교자박물관 소장 필첩 및 첩갑에 사용된 직물 및 염료분석)

  • Baek, Young Mee;Ha, Shin Hye;Bae, Sun Young;Lee, Jung Eun;Kwon, Young Suk
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.345-352
    • /
    • 2016
  • The purpose of this study is to analyze on the textile used for book covers of "Gukgiboksiksoseon" and "Boepboksajeolboksaek", and slipcase of these books kept in the Oryundae Korean Martyrs Museum in Busan. These records are estimated to be written by Gyeongbin Kim(1831-1907), who was a royal concubine of 24th King Heonjong (reign 1834~1849) of the Joseon Dynasty. The cover textile of slipcase and two books are investigated to be silks by the FT-IR. The cover textile of slipcase is flower patterned satin with silver thread and the cover textile of two books are green and red with Su characters and bat patterned satin. The blackish part of pattern of slipcase is investigated by silver thread by FE-SEM-EDAX. Moreover, by the dye analysis, berberine, brazilin, and carthamin are detected from the cover textile of "Boepboksajeolboksaek". It is indicated that it was dyed with an amur cork-tree, a sappanwood, and a safflower. And rutin which is the main dyestuff of the sophora flower of the pagoda tree was detected from the yellow thread of the cover textile of slipcase.

Antibacterial Effect of Gelatin/Ag Nanoparticle Biocomposite Prepared Using Solution Plasma Generated by Unipolar DC Power (단극성 직류전원으로 유도된 용액 플라즈마를 이용하여 제조한 젤라틴/은 나노입자 생체복합재료의 항균 효과)

  • Kim, Seong-Cheol;Yoon, Gook-Jin;Nam, Sang-Woo;Lee, Sang-Yul;Kim, Jung-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.403-408
    • /
    • 2012
  • Gelatin/Ag nanoparticle (AgNP) biocomposite was synthesized using the solution plasma process (SPP) that has been recently introduced as an effective method for synthesis of nanoparticles. In this study, gelatin/AgNP biocomposite was synthesized using various concentrations of Ag precursor ($AgNO_3$) and gelatin in the range of 1-5 mM and 1-3% (w/w), respectively, without using any chemical reducing agent. Physical properties of the gelatin/AgNP biocomposites were analyzed using EDS, FE-SEM, and TEM. The results indicated that spherical AgNPs with approximately 12~20 nm in diameter were synthesized successfully in the gelatin matrix by SPP. As the concentration of gelatin was increased (3%, w/w), disperse stability of AgNP was improved and micro-pores of gelatin became smaller and denser in the 3D scaffold. Bactericidal activity of the AgNPs was examined against Staphylococcus aureus and Escherichia coli by measuring zone of growth inhibition and decrease in colony forming unit (CFU). CFUs of S. aureus and E. coli were decreased approximately to 56% and 0%, respectively, by the gelatin/AgNP biocomposite, Ag5G3.

Transparent Hydrophobic Anti-Reflection Coating with SiO2\TiO2 Thin Layers (SiO2\TiO2 박막에 의한 투명 발수 반사방지 코팅)

  • Noh, Yeoung-Ah;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • Functional coatings, such as anti-reflection and self-cleaning, are frequently applied to cover glass for photovoltaic applications. Anti-reflection coatings made of mesoporous silica film have been shown to enhance the light transmittance. $TiO_2$ photocatalyst films are often applied as a self-cleaning coating. In this study, transparent hydrophobic anti-reflective and self-cleaning coatings made of $SiO_2/TiO_2$ thin layers were fabricated on a slide glass substrate by the sol-gel and dip-coating processes. The morphology of the functional coatings was characterized by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The optical properties of the functional coatings were investigated using an UV-visible spectrophotometer. Contact angle measurements were performed to confirm the hydrophobicity of the surface. The results showed that the $TiO_2$ films exhibit a high transmittance comparable to that of the bare slide glass substrate. The $TiO_2$ nanoparticles make the film more reflective and lead to a lower transmittance. However, the transmittance of the $SiO_2/TiO_2$ thin layers is 93.5% at 550 nm with a contact angle of $110^{\circ}$, which is higher than that of the bare slide glass (2.0%).

Modification of Silica Nanoparticles with Bis[3-(triethoxysilylpropyl)]tetrasulfide and Their Application for SBR Nanocomposite (Bis[3-(triethoxysilylpropyl)]tetrasulfide에 의한 실리카 입자의 표면개질 반응과 SBR 나노 복합체 응용)

  • Ryu, Hyun Soo;Lee, Young Seok;Lee, Jong Cheol;Ha, KiRyong
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.308-315
    • /
    • 2013
  • In this study, we performed surface modification of silica nanoparticles with bis[3-(triethoxysilylpropyl)]tetrasulfide (TESPT) silane coupling agent to study the effects of treatment temperature, treatment time, and amount of TESPT used on the silanization degree with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (EA) and solid state $^{13}C$ and $^{29}Si$ cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance spectroscopy (NMR). We found peak area of isolated silanol groups at $3747cm^{-1}$ decreased, but peak area of $-CH_2$ asymmetric stretching of TESPT at $2938cm^{-1}$ increased with the amount of TESPT from FTIR measurements. We also used universal testing machine (UTM) to study mechanical properties of styrene butadiene rubber (SBR) nanocomposites with 20 phr (parts per hundred of rubber) of pristine and TESPT modified silicas, respectively. The tensile strength and 100% modulus of modified silica/SBR nanocomposite were enhanced from 5.65 to 9.38MPa, from 1.62 to 2.73 MPa, respectively, compared to those of pristine silica/SBR nanocomposite.

Fabrication and characteristics of ZnO nanorods grown on Zn substrates by the hydrothermal method (수열합성법에 의해 Zn 기판 위에 제조된 ZnO 나노로드의 특성)

  • Sung, Ji-Hye;Kim, Jin-Ho;Hwang, Jong-Hee;Lim, Tae-Young;Yeon, Deuk-Ho;Cho, Yong-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.147-152
    • /
    • 2011
  • ZnO nanorods fabricated on a Zn substrate pre-coated with ZnO as a seed layer by the hydrothermal method were studied mainly as a function of ZnO precursor concentration. Characteristic features by using field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) were investigated to define the changed micro-structure and crystalline phase of the ZnO nanorods according to the experimental conditions. The nanorod morphology strongly depended on the precursor concentration. For example, ZnO nanorods vertically aligned with a hexagonal (002) oriented structure with a diameter of 600~700 nm and length of $6.75{\mu}m$ were clearly observed at the highest concentration of 0.015 M. The strong hexagonal structure was believed to be associated with the highest photoluminescene (PL) intensity and a promising voltage value of ca. 6.069 V at $1000{\mu}A$.