• 제목/요약/키워드: Fe-Cr alloys

검색결과 199건 처리시간 0.023초

Fe합금의 내 산화성과 황화성에 미치는 Al과 Cr 함량의 영향 (Effect of Al and Cr contents on the High Temperature Oxidation- and Sulfidation-resistance of Fe Alloys)

  • 김슬기;이동복
    • 한국표면공학회지
    • /
    • 제45권2호
    • /
    • pp.61-69
    • /
    • 2012
  • Alloys of Fe-(5, 10, 15)Al and Fe-(10, 20, 30, 40)Cr were corroded at 700 and $800^{\circ}C$ for 70 hr in either atmospheric air or 1 atm of Ar+$1%SO_2$ gases. In these atmospheres, Fe-5Al and Fe-10Cr alloys displayed poor corrosion resistance. In atmospheric air, Fe-5Al alloys formed oxide nodules, while Fe-10Cr alloys formed thick scales and internal oxides. In Ar+$1%SO_2$ gases, Fe-5Al and Fe-10Cr alloys formed thick, nonadherent bi-layered scales, which grew primarily by the outward diffusion of Fe ions and inward diffusion of oxygen and sulfur ions. By contrast, in atmospheric air and Ar+$1%SO_2$ gases, Fe-(10, 15)Al and Fe-(20, 30, 40)Cr alloys displayed good corrosion resistance by forming $Al_2O_3$ and $Cr_2O_3$ layers on the surface, respectively.

Fe-Al과 Fe-Cr계 합금의 내 산화성에 미치는 Al과 Cr의 영향 (Effect of Al and Cr on Oxidation of Fe-Al and Fe-Cr Alloys)

  • 김태완;조승훈;고인용;도정만;윤진국;손인진
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.981-988
    • /
    • 2010
  • The effects of Cr and Al contents in Fe-Al and Fe-Cr alloys on oxidation resistance, hardness, and the thermal expansion coefficient were investigated. Fe-Al and Fe-Cr alloys above 10wt.%Al and 20wt.%Cr contents have a high oxidation resistance. The hardness of the Fe-Al and Fe-Cr alloys increased with an increase in Al and Cr contents due to solid solution or formation of an intermetallic compound. The coefficients of thermal expansion of the Fe-Al alloys were higher than those of the Fe-Cr alloys because the coefficient of thermal expansion of Al was higher than that of Fe and Cr.

Effect of Si on Corrosion of Fe-Cr and Fe-Cr-Ni Alloys in wet CO2 Gas

  • Nguyen, T.D.;Zhang, J.;Young, D.J.
    • Corrosion Science and Technology
    • /
    • 제14권3호
    • /
    • pp.127-131
    • /
    • 2015
  • Model alloys Fe-9Cr, Fe-20Cr and Fe-20Cr-20Ni (wt. %) with 0.1 and 0.2 % Si were exposed to $Ar-20CO_2-20H_2O$ gas at $818^{\circ}C$. The undoped alloys formed a thick iron-rich oxide scale. The additions of Si reduced scaling rates of Fe-9Cr to some extent but significantly suppressed the formation of iron oxide scales on Fe-20Cr and Fe-20Cr-20Ni. Carburisation also occurred in all undoped alloys, but not in Si-containing Fe-20Cr and Fe-20Cr-20Ni. Protection against carburisation was a result of the formation of an inner scale layer of silica.

Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al 및 Ni3Al-Cr 합금표면에 형성된 산화물 특성분석 (Characterization of Oxide Scales Formed on Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al and Ni3Al-Cr Alloys)

  • 심웅식;이동복
    • 한국재료학회지
    • /
    • 제12권11호
    • /
    • pp.845-849
    • /
    • 2002
  • Alloys of $Fe_3$Al, $Fe_3$Al-6Cr, $Fe_3$Al-4Cr-1Mo, $Ni_3$Al, and $Ni_3$Al-2.8Cr were oxidized at $1000^{\circ}C$ in air, and the oxide scales formed were studied using XRD. SEM, EPMA, and TEM. The oxide scales that formed on $Fe_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$ containing a small amount of dissolved Fe and Cr ions, whereas those that formed on $Ni_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$, together with a small amount of $NiAl_2$$O_4$, NiO and dissolved Cr ions. For the entire alloys tested, nonadherent oxide scales formed, and voids were inevitably existed at the scale-matrix interface.

Fe-(8.5~36.9) wt% Cr합금의 600~800℃, (N2,H2S,수증기)-혼합 가스분위기에서의 부식 (Corrosion of Fe-(8.5~36.9) wt% Cr Alloys at 600~800℃ in (N2, H2S, H2O)-Mixed Gases)

  • 김민정;이동복
    • 대한금속재료학회지
    • /
    • 제50권3호
    • /
    • pp.218-223
    • /
    • 2012
  • Fe-(8.5, 18.5, 28.3, 36.9) wt% Cr alloys were corroded between 600 and $800^{\circ}C$ for up to 70 h in a 1 atm gas mixture that consisted of 0.0242 atm of $H_2S$, 0.031 atm of water vapor, and 0.9448 atm of nitrogen gas. Their corrosion resistance increased with an increment in the Cr content. The Fe-8.5%Cr alloy corroded fast, forming thick, fragile, nonadherent scales that consisted primarily of an outer FeS layer and an inner (Fe, Cr, O, S)-mixed layer. The outer FeS layer grew into the air by the outward diffusion of $Fe^{2+}$ ions, whereas the inner mixed layer grew by the inward diffusion of oxygen and sulfur ions. At the interface of the outer and inner scales, voids developed and cracking occurred. The Fe-(18.5, 28.3, 36.9)% Cr alloys displayed much better corrosion resistance than the Fe-8.5Cr alloy, because thin $Cr_2O_3$ or $Cr_2S_3$ scales formed.

Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마 이온 질화특성에 미치는 합금원소의 영향 [II플라즈마 이온 질화특성] (The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys. [II Plasma Ion Nitriding Characteristic])

  • 손동욱;이해후;성장현;박규섭;김창규;강창룡
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.76-81
    • /
    • 2005
  • The effect of micro-pulse plasma nitriding temperature and time on the case thickness, hardness and nitride formation in the surface of Fe-12Cr-22Mn-X alloy with 3% Co and 1% Ti alloys elements investigated. External compound layer and internal diffusion layer was constituted in plasma nitride case of Fe-12Cr-22Mn-X alloys and formed nitride phase such as ${\gamma}'-Fe4N\;and\;{\varepsilon}-Fe2-3N$. Case depth increased with increasing the plasma nitriding temperature and time. Surface hardness of nitrided Fe-12Cr-22Mn-X alloys obtained the above value of Hv 1,600 and case depth obtained the above value of $45{\mu}m$ in Fe-12Cr-22Mn-3Co alloy and $60{\mu}m$ in Fe-12Cr-22Mn-1Ti alloy. Wear-resistance increased with increasing plasma nitriding time and showing the higher value in Fe-12Cr-22Mn-1Ti alloy than Fe-12Cr-22Mn-3Co alloy.

  • PDF

Fe-Cr-Ni 합금의 저온에서의 자기적 성질에 관한 연구 (A Study on the low temperature magnetic properties of Fe-Cr-Ni alloys)

  • 안병덕;김진옥;장경호;송기영
    • 한국자기학회지
    • /
    • 제3권4호
    • /
    • pp.277-283
    • /
    • 1993
  • 세개의 오스테 나이트계의 Fe-Cr-Ni 스테인레스 합금강들의 DC 자화율의 온도의존성을 4.2-300 K 온도영역에서 측정하였다. 측정결과 두개의 합금강들은 two-magnetic-phase 모델(spin glass와 초상자성)을 만족하였으며 나머지 하나는 자기적 2중 천이현상을 나타내었다. 또한 Ni/Cr의 비가 증가할수록 자화율의 최 대값이 증가하고 이 값을 나타내는 온도는 감소하였다.

  • PDF

고온 부식환경에 대한 Fe-Cr-X 합금의 열역학적 반응경로에 관한 연구 (A Study of Thermodynamical Reaction Path in Fe-Cr-X Alloys at High Temperature Corrosion Environments)

  • 이병우;김우열
    • 수산해양기술연구
    • /
    • 제32권4호
    • /
    • pp.411-420
    • /
    • 1996
  • The structure of the scale formed on the surface of Fe - Cr - X alloys exposed to 1143K high sulfidation($Ps_2$ = 1.11$\times$$10^-7$ atm, $Po_2$ = 3.11$\times$$10^-20$ atm) or sulfidation/oxidation(($Ps_2$= 1.06$\times$$10^-7$ atm, ($Po_2$ = 3.11$\times$$10^-18$ atm) environment has been observed and analysed using XRD, SEM/EDS. To investigate the possibility of protective film formed on the surface of the alloys, Aluminium, Nickel were selected as alloying elements. Thermodynamic phase stability diagram was used to predict the reaction path of scale formed on Fe - Cr - X alloys. Parabolic rate constant($K_p$) value with 6wt% Al in Fe - 25Cr alloy decreased significantly compared with the Fe - 25Cr alloy without 6wt% Al. Since thin layer of defect free sulfide film, (Al, Cr)Sx, was formed at the alloy/scale interface. Fe - rich sulfide scale at outer layer and Cr - rich sulfide scale containing porosity at inner layer of Fe - 25Cr alloy have been observed. The reaction path for these scales could be predicted by the thermodynamic stability diagram.

  • PDF

Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능] (The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity])

  • 손동욱;정상훈;김재환;이종문;김익수;강창룡
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF

Fe-30at.%A1 합금의 압연성에 미치는 Cr, B, Ti 및 Si 첨가효과 (Effects of Cr, B, Ti and Si on Rolling Characteristics in Fe-30at.%A1 Alloy)

  • 최답천;이지성
    • 한국주조공학회지
    • /
    • 제23권2호
    • /
    • pp.77-85
    • /
    • 2003
  • Some alloying elements such as Cr, B, Ti and Si were added individually or as a mixture to Fe-30 at.%Al alloys. The alloys were melted using an arc furnace and then heat-treated for homogenization at 1000$^{\circ}C$ for 7 days and followed by rolling at 1000$^{\circ}C$. The alloying elements on rolling characteristics were investigated by the microstructures and fracture mode before and after rolling. The microstructures before rolling showed that all of the alloys had equiaxed grains. On the other hand, the microstructures of rolling plane as well as its perpendicular plane became elongated after rolling. The alloys such as Fe-30Al, Fe-30Al-3Ti, Fe-30Al-0.5B, Fe-30Al-5Cr and Fe-30Al-3Ti-0.5B revealed better rolling behaviour from the point that intergranular and cleavage fractures were not fundamentally occurred. But the addition of 5Ti or 3Si to Fe-Al alloys had detrimental effects. The Ti-added alloy system such as Fe-30Al-5Ti, Fe-30Al-5Ti-5Cr, Fe-30Al-3Ti-5Cr and Fe-30Al-5Ti-0.5B were cracked through grain and showed cleavage fracture. The Si-added alloy system such as Fe-30Al-5Si, Fe-27Al-3Si and Fe-27Al-5Cr-3Si were cracked along the grain boundary and showed intergranular fracture. $DO_3{\leftrightarrow}B_2$ transition temperature of Fe-30at.%Al alloy was 520$^{\circ}C$, whereas the addition of 3Ti and 3Ti+0.5B comparably increased the temperature to 797 and 773$^{\circ}C$, respectively.