DOI QR코드

DOI QR Code

Corrosion of Fe-(8.5~36.9) wt% Cr Alloys at 600~800℃ in (N2, H2S, H2O)-Mixed Gases

Fe-(8.5~36.9) wt% Cr합금의 600~800℃, (N2,H2S,수증기)-혼합 가스분위기에서의 부식

  • Kim, Min Jung (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 김민정 (성균관대학교 신소재공학과) ;
  • 이동복 (성균관대학교 신소재공학과)
  • Received : 2011.12.13
  • Published : 2012.03.25

Abstract

Fe-(8.5, 18.5, 28.3, 36.9) wt% Cr alloys were corroded between 600 and $800^{\circ}C$ for up to 70 h in a 1 atm gas mixture that consisted of 0.0242 atm of $H_2S$, 0.031 atm of water vapor, and 0.9448 atm of nitrogen gas. Their corrosion resistance increased with an increment in the Cr content. The Fe-8.5%Cr alloy corroded fast, forming thick, fragile, nonadherent scales that consisted primarily of an outer FeS layer and an inner (Fe, Cr, O, S)-mixed layer. The outer FeS layer grew into the air by the outward diffusion of $Fe^{2+}$ ions, whereas the inner mixed layer grew by the inward diffusion of oxygen and sulfur ions. At the interface of the outer and inner scales, voids developed and cracking occurred. The Fe-(18.5, 28.3, 36.9)% Cr alloys displayed much better corrosion resistance than the Fe-8.5Cr alloy, because thin $Cr_2O_3$ or $Cr_2S_3$ scales formed.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Integrated gasification combined cycle; http://igccs.plani.co.kr/
  2. N. J. Simms, J. F. Norton, and T. M. Lowe, J. Phys. IV 3, 807 (1993).
  3. W. T. Bakker, J. A. Bonvallet, and J. H. W. de Wit, J. Phys. IV 3, 731 (1993).
  4. Y. C. Bak and J. H. Choi, Hwahak Konghak 41, 243 (2003).
  5. W. Bakker, Metals Handbook, Vol. 13C, Society for Metals, American (2003).
  6. H. S. Lee, J. S. Jung, K. B. Yoo, and E. H. Kim, Kor. J. Met. Mater. 48, 277 (2010). https://doi.org/10.3365/KJMM.2010.48.04.277
  7. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM Int. (2002).
  8. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd ed., Cambridge Univ. (2006).
  9. D. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam (2008).
  10. S. Mrowec, Oxid. Met. 1, 177 (1995).
  11. J. Shen, L. Zhou, and T. Li, Oxid. Met. 48, 164 (1997).
  12. S. R. J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci. 53, 775 (2008). https://doi.org/10.1016/j.pmatsci.2007.11.001
  13. Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corros. Sci. 48, 741 (2006). https://doi.org/10.1016/j.corsci.2005.01.012
  14. J. H. Kim, J. H. Baek, B. O. Lee, C. B. Lee, and Y. S. Yoon, Met. Mater. Int. 17, 535 (2011). https://doi.org/10.1007/s12540-011-0801-0
  15. S. Mrowec, T. Walec, and T. Werber, Oxid. Met. 1, 93 (1969). https://doi.org/10.1007/BF00609926
  16. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice Hall (1996).
  17. S. Mrowec and M. Wedrychowska, Oxid. Met. 13, 481 (1979). https://doi.org/10.1007/BF00812774
  18. T. Narita and T. Ishikawa, Mater. Sci. Eng. 87, 51 (1987). https://doi.org/10.1016/0025-5416(87)90360-0
  19. M. Danielewski, S. Mrowec, and A. Stolosa, Oxid. Met. 17, 77 (1982). https://doi.org/10.1007/BF00606194
  20. S. Mrowec and K. Przybylski, Oxid. Met. 23, 107 (1985). https://doi.org/10.1007/BF00659899
  21. M. Schulte, A. Rahmel, and M. Schutze, Oxid. Met. 49, 33 (1998). https://doi.org/10.1023/A:1018818021754
  22. T. Rosenqvist, J.I.S.I. 37, 176, (1954).
  23. I. Barin, Thermochemical Data of Pure Substances, VCH (1989).
  24. F. Gesmundo, F. Viani, W. Znamirowski, K. Godlewski, and F. Bregani, Mater. Corros. 43, 83 (1992). https://doi.org/10.1002/maco.19920430302
  25. M. J. Kim, D. B. Lee, to be submitted.