Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.3.218

Corrosion of Fe-(8.5~36.9) wt% Cr Alloys at 600~800℃ in (N2, H2S, H2O)-Mixed Gases  

Kim, Min Jung (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Lee, Dong Bok (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.3, 2012 , pp. 218-223 More about this Journal
Abstract
Fe-(8.5, 18.5, 28.3, 36.9) wt% Cr alloys were corroded between 600 and $800^{\circ}C$ for up to 70 h in a 1 atm gas mixture that consisted of 0.0242 atm of $H_2S$, 0.031 atm of water vapor, and 0.9448 atm of nitrogen gas. Their corrosion resistance increased with an increment in the Cr content. The Fe-8.5%Cr alloy corroded fast, forming thick, fragile, nonadherent scales that consisted primarily of an outer FeS layer and an inner (Fe, Cr, O, S)-mixed layer. The outer FeS layer grew into the air by the outward diffusion of $Fe^{2+}$ ions, whereas the inner mixed layer grew by the inward diffusion of oxygen and sulfur ions. At the interface of the outer and inner scales, voids developed and cracking occurred. The Fe-(18.5, 28.3, 36.9)% Cr alloys displayed much better corrosion resistance than the Fe-8.5Cr alloy, because thin $Cr_2O_3$ or $Cr_2S_3$ scales formed.
Keywords
alloys; casting; corrosion; scanning electron microscopy (SEM); $H_2S$ gas;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Integrated gasification combined cycle; http://igccs.plani.co.kr/
2 N. J. Simms, J. F. Norton, and T. M. Lowe, J. Phys. IV 3, 807 (1993).
3 W. T. Bakker, J. A. Bonvallet, and J. H. W. de Wit, J. Phys. IV 3, 731 (1993).
4 Y. C. Bak and J. H. Choi, Hwahak Konghak 41, 243 (2003).
5 W. Bakker, Metals Handbook, Vol. 13C, Society for Metals, American (2003).
6 H. S. Lee, J. S. Jung, K. B. Yoo, and E. H. Kim, Kor. J. Met. Mater. 48, 277 (2010).   DOI   ScienceOn
7 A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, ASM Int. (2002).
8 N. Birks, G. H. Meier, and F. S. Pettit, Introduction to High Temperature Oxidation of Metals, 2nd ed., Cambridge Univ. (2006).
9 D. Young, High Temperature Oxidation and Corrosion of Metals, Elsevier, Amsterdam (2008).
10 S. Mrowec, Oxid. Met. 1, 177 (1995).
11 J. Shen, L. Zhou, and T. Li, Oxid. Met. 48, 164 (1997).
12 S. R. J. Saunders, M. Monteiro, and F. Rizzo, Prog. Mater. Sci. 53, 775 (2008).   DOI   ScienceOn
13 Z. G. Zhang, F. Gesmundo, P. Y. Hou, and Y. Niu, Corros. Sci. 48, 741 (2006).   DOI   ScienceOn
14 J. H. Kim, J. H. Baek, B. O. Lee, C. B. Lee, and Y. S. Yoon, Met. Mater. Int. 17, 535 (2011).   DOI   ScienceOn
15 S. Mrowec, T. Walec, and T. Werber, Oxid. Met. 1, 93 (1969).   DOI   ScienceOn
16 D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice Hall (1996).
17 S. Mrowec and M. Wedrychowska, Oxid. Met. 13, 481 (1979).   DOI   ScienceOn
18 T. Narita and T. Ishikawa, Mater. Sci. Eng. 87, 51 (1987).   DOI
19 M. Danielewski, S. Mrowec, and A. Stolosa, Oxid. Met. 17, 77 (1982).   DOI   ScienceOn
20 S. Mrowec and K. Przybylski, Oxid. Met. 23, 107 (1985).   DOI   ScienceOn
21 M. Schulte, A. Rahmel, and M. Schutze, Oxid. Met. 49, 33 (1998).   DOI   ScienceOn
22 T. Rosenqvist, J.I.S.I. 37, 176, (1954).
23 I. Barin, Thermochemical Data of Pure Substances, VCH (1989).
24 F. Gesmundo, F. Viani, W. Znamirowski, K. Godlewski, and F. Bregani, Mater. Corros. 43, 83 (1992).   DOI
25 M. J. Kim, D. B. Lee, to be submitted.