• Title/Summary/Keyword: Fe-Cr alloy

Search Result 337, Processing Time 0.026 seconds

A STUDY ON THE TRIBOLOGICAL CHARACTERISTICS OF FeCrSi/A366.0 ALLOY COMPOSITES

  • Song, Tae-Hoon;Choi, Yong-Bum;Park, Sung-Ho;Huh, Sun-Chul;Park, Won-Jo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.262-267
    • /
    • 2007
  • In this paper, we study about wear properties for the metal matrix composites fabricated by low pressure infiltration process. Metal fiber preform reinforced aluminum alloy composite were fabricated by low pressure casting process under 0.4MPa. Infiltration condition was changed the pressure infiltration time of 1 s, 2 s and 5 s under a constant pressure of 0.4MPa. The molten alloy completely infiltrated the FeCrSi metal perform regardless of the increase in the pressure acceleration time. However, the infiltration time at the pressure acceleration time of 1s was shorter than at the pressure acceleration time of 2s or 5s. The FeCrSi/A366.0 composite was investigated the porosity. The porosity is reducing as the pressure acceleration time compared with the pressure acceleration time of 2s and 5s. The FeCrSi/A366.0 composites were investigated the wear resistance. FeCrSi/A366.0 composite at pressure acceleration time of 1s has excellent wear resistance.

  • PDF

The Anodicc PolarizationBehavior of Fe-Cr-Ni-W alloy in 1N HCI Solution (1N 염산 용액에서 Fe-Cr-Ni-W 합금의 양분극 거동에 관한 연구)

  • 윤재돈;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.4
    • /
    • pp.176-182
    • /
    • 1988
  • Effects of Cr, Ni and W on the anodic polarization behavior were investigated for Fe-Cr-Ni-W alloys in deaerated 1N HCI solution. Surface films formed on the polarization were analysed using AES, SEM and EDAX. A higerconcentration of tungten was found in the surface oxide film compared to the matrix. It played an importanet role on incresing the stability of the passive film. The presence of an adequate amount of Cr was essential to increase the pitting resistance of the alloys in acid chloride media. Under 12 wt%cr,alloys containing 6wt%W did not exhidit any passivity at all. The main role of Ni was to control the microstructure rather than to modify the corrosion resistance. In 23 cr-14Ni-^W alloy, the duplex microstructure of ferrite($\delta$-phase) in an austenic matrix was developed. The reson why proferred pitting appeared in austenite and ferrite/austenite interface was that ferrite had more amount of Cr and W than austenite.

  • PDF

Effect of Cr, Mo and W on the Microstructure of Al Hot Dipped Carbon Steels

  • Trung, Trinh Van;Kim, Min Jung;Park, Soon Yong;Yadav, Poonam;Abro, Muhammad Ali;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2014
  • A low carbon steel, Fe-2.25%Cr steel (ASTM T22), and Fe-2.25%Cr-1.6%W steel (ASTM T23) were aluminized by hot dipping into molten Al baths. After hot-dipping, a thin Al-rich topcoat and a thick alloy layer formed on the surface. The topcoat consisted primarily of a thin Al layer that contained a small amount of Fe, whereas the alloy layer consisted of Al-Fe intermetallics such as $Al_5Fe_2$ and AlFe. Cr, Mo, and W in T22 and T23 steels reduced the thickness of the topcoat and the alloy layer, and flattened the reaction front of the aluminized layer, when compared to the low carbon steel.

NaBH4 Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy (Co-P-B/FeCrAlloy 촉매를 이용한 NaBH4 가수분해 반응)

  • Hwang, Byungchan;Jo, Ara;Sin, Sukjae;Choi, Daeki;Nam, Sukwoo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Properties of $NaBH_4$ hydrolysis reaction using Co-P-B/FeCrAlloy catalyst and the catalyst durability were studied. Co-P-B/FeCrAlloy catalyst showed low activation energy such as 25.2 kJ/mol in 5 wt% $NaBH_4$ solution, which was similar that of noble metal catalyst. The activation energy increased as the $NaBH_4$ concentration increased. Formation of gel at high concentration of $NaBH_4$ seriously affected hydrogen evolution rate and the catalyst durability. The catalyst loss decreased as reaction temperature increased due to lower gel formation when the concentration of $NaBH_4$ was over 20 wt%. Considering hydrogen generation rate and durability of catalyst, the catalyst supported with FeCrAlloy heat-treated at $1,000^{\circ}C$ without ultra vibration during dipping and calcination after catalyst dipping was best catalyst. To use catalyst more than three times in 25 wt% $NaBH_4$ solution, it should be reacted at higher temperature than $60^{\circ}C$.

Effect of Cr Addition on the High Temperature Deformation Behavior of Fe-Al Intermetallics (Fe-Al 금속간 화합물의 고온변형거동에 미치는 Cr 첨가의 효과)

  • Bang W.;Lim H. T.;Ha T. K.;Song J. H.;Chang Y. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.167-171
    • /
    • 2001
  • High temperature deformation behavior of Fe-28Al-5Cr alloy has been investigated known to show anomalous temperature dependence of yield strength. Specifically, the effect of Cr addition has been examined. A series of tensile and load relaxation tests have been carried out to obtain the flow behavior of Fe-28Al-5Cr alloy at the elevated temperatures. The flow curves have then been analyzed using the inelastic deformation theory recently proposed. Firstly, high temperature flow stress of iron aluminides can be resolved into internal stress and frictional stress. Secondly, the temperature corresponding to peak strength gets higher level at faster strain rate, which presumably due to the increased contribution of internal stress in observed flow stress. And thirdly, the alloying of Cr seems to cause solid-solution strengthening of frictional stress level and the elevation of 2nd order transition temperature. In this analogy, Fe-28Al-5Cr exhibits better strength especially at relatively higher temperature and lower strain rate than Fe-28Al.

  • PDF

The Sliding Wear behavior of Fe-Cr-C-Si Alloy in Pressurized Water (Fe-Cr-C-Si 계 경면처리 합금의 고압ㆍ수중 마모거동)

  • Lee, Kwon-yeong;Lee, Min-Woo;Oh, Young-Min;;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.13 no.4
    • /
    • pp.224-227
    • /
    • 2003
  • The sliding wear behavior of a Fe-base hardfacing alloy was investigated in the temperature range of $25∼250^{\circ}C$ under a contact stress of 15 ksi (103 MPa). The wear loss of this Alloy in pressurized water was less than that of NOREM 02. And galling did not occurred at this alloy in all temperature ranges. It was considered that the wear resistance of this Alloy was attributed to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear.

A study on the carburization of Fe-Cr alloys. (Fe-Cr합금의 침탄에 관한 연구)

  • 박병옥;윤병하
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.10-16
    • /
    • 1989
  • The properties of carburization on Fe-Cr alloys at 900-96$0^{\circ}C$were investiged. The study on carbide layer which had developed during solid-carburizing was made by use of S.E.M, E.PM.A, and X-ray analyzer. The results obtained were summarized as follows, the composition of carbide and the value of activation energy for the growth of carbide layer on each Fe-Cr alloy were 1) Fe-1Cr : M3C and 52Kcal/mole 2) Fe-3Cr and Fe-5Cr : M7C3and 85-88Kcal/mole 3) Fe-7Cr and Fe-9Cr : (M7C3+M23C6)and 55-66Kcal/mole.

  • PDF

A Study On the Sand Wear Resistance and Formation Behavior of Boride Layer Formed on Ni-Cr-Mo Steel by Plasma Paste Boronizing Treatment (Plasma Paste Boronizing법에 의한 Ni-Cr-Mo강의 붕화물층 생성거동과 내 토사마모특성에 관한 특성)

  • Cho J. H;Park H. K;Son K. S;Yoon J. H;Kim H. S;Kim C. G
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • The surface property and formation behavior of a boride layer formed on Ni-Cr-Mo steel in a plasma paste boronizing treatment were investigated. The plasma paste boronizing treatment was carried out at 973~1273 K for 1-7 hrs under the gas ratio of Ar:H$_2$ (2:1). The thickness of the boride layer increased with increasing temperature and time in the boronizing treatment. The cross-section of the boride layer was a tooth structure and the hardness was Hv 2000~2500. XRD analysis revealed that the compound was identified as FeB, $Fe_2$B, and mixed phase of FeB/$Fe_2$B in the boride layer formed at 973~1073 K, 1173K, and 1273K, respectively. The Ni-Cr-Mo alloy boronized at 1173-1273 K showed the best excellent wear resistance against the sand. As a results of corrosion test in 1 M $H_2$$SO_4$ solution, $Fe_2$B formed on the matrix alloy exhibited higher corrosion resistance than FeB.