• 제목/요약/키워드: Fe-Co alloy powder

검색결과 67건 처리시간 0.02초

화학용액혼합과 수소환원법으로 제조된 나노 구조 Fe-Co 합금분말의 미세구조 및 자성 특성 (Microstructure and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Chemical Solution Mixing and Hydrogen Reduction Methods)

  • 박현우;이백희;이규환;김영도
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.333-336
    • /
    • 2003
  • The purpose of this study is the fabrication of nano-sized Fe-Co alloy powders with soft magnetic properties by the slurry mixing and hydrogen reduction (SMHR) process. $FeCl_2$0 and $CoCl_2$ powders with 99.9% purities were used for synthesizing nanostructured Fe-Co alloy powder. Nano-sized Fe-Co alloy powders were successfully fabricated using SMHR, which was performed at 50$0^{\circ}C$ for 1 h in H$_2$ atmosphere. The fabricated Fe-Co alloy powders showed $\alpha$' phase (ordered body centered cubic) with the average particle size of 45 nm. The SMHR powder exhibited low coercivity force of 32.5 Oe and saturation magnetization of 214 emu/g.

화학용액 혼합과 수소환원법을 이용한 나노구조 Fe-Co 합금분말의 제조 (Chemical Solution Mixing and Hydrogen Reduction Method for Fabrication of Nanostructured Fe-Co Alloy Powders)

  • 박광현;박현우;이백희;장시영;이정근;김영도
    • 한국분말재료학회지
    • /
    • 제11권2호
    • /
    • pp.137-142
    • /
    • 2004
  • In this study, chemical solution mixing and hydrogen reduction method was used to fabricate nanostructured $Fe_xCo_{1-x}$ alloy powders. Fe-Co chloride mixture, FeCl$_2$ and COCI$_2$ with 99.9% purity, were reduced in hydrogen atmosphere. Nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated. Magnetic properties of fabricated $Fe_xCo_{1-x}$(x=0, 10, 30, 50, 70, 100) alloy powders with the same grain size were measured because size factor can affect magnetic properties. Coercivity of Fe-Co alloy powders were increased with increasing Co contents. Maximum value of coercivity in various Co contented Fe-Co alloy powders with similar grain size was 125 Oe at Fe$_{100}$. Saturation magnetization value at Fe$_{70}$Co$_{30}$ composition showed maximum value of 219 emu/g and saturation magnetization value decreased with increasing Co contents and minimum value of 155 emu/g was observed at Co$_{100}$.

나노 구조 Fe-Co 합금분말의 제조 및 자성특성 (Fabrication and Magnetic Properties of Nanostructured Fe-Co Alloy Powder)

  • 이백희;안봉수;김대건;김영도
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.182-188
    • /
    • 2002
  • Conventional Fe-Co alloys are important soft magnetic materials that have been widely used in industry. Compared to its polycrystalline counterpart, the nanostructured materials have showed superior magnetic properties, such as higher permeability and lower coercivity due to the single domain configuration. However, magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. In the present work, starting with two powder mixtures of Fe and Co produced by mechanical alloying (MA) and hydrogen reduction process (HRP), differences in the preparation process and in the resulting microstructural characteristics will be described for the nano-sized Fe-Co alloy particles. Moreover, we discuss the effect of the microstructure such as crystal structure and grain size of Fe-Co alloys on the magnetic properties.

Fabrication of Nanostructured Fe-Co Alloy Powders by Hydrogen Reduction and its Magnetic Properties

  • Lee, Young-Jung;Lee, Baek-Hee;Kim, Gil-Su;Lee, Kyu-Hwan;Kim, Young-Do
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.120-121
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected by the microstructures such as grain size (or particle size), internal strain and crystal structure. Thus, it is necessary to study the synthesis of nanostructured materials to make significant improvements in their magnetic properties. In this study, nanostructured Fe-20at.%Co and Fe-50at.%Co alloy powders were prepared by hydrogen reduction from the two oxide powder mixtures, $Fe_2O_3$ and $Co_3O_4$. Furthermore, the effect of microstructure on the magnetic properties of hydrogen reduced Fe-Co alloy powders was examined using XRD, SEM, TEM, and VSM.

  • PDF

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성 (Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process)

  • 안인섭;박동규;안광복;신승목
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

Synthesis of Nanostructured Fe-Co Alloy Powders from Metal Salts

  • Lee, Young-Jung;Lee, Jea-Sung;Seo, Young-Ik;Kim, Young-Do
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.336-339
    • /
    • 2006
  • Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as pain size (or particle size), internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary fur a significant improvement in magnetic properties. In the present work, nanostructured Fe-Co alloy powders with a grain size of 50 nm were successfully fabricated from the powder mixtures of (99.9% purity) $FeCl_2$ and $CoCl_2$ by chemical solution mixing and hydrogen reduction.

수소환원법으로 제조된 나노구조 Fe-Co 합금분말의 미세구조 및 자성특성 (Micro Structures and Magnetic Properties of Nanostructured Fe-Co Alloy Powders Produced by Hydrogen Reduction Process)

  • 안봉수;이백희;이규환;김영도
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.488-492
    • /
    • 2002
  • Magnetic properties of nanostructured materials are affected in complicated manner by their microstructure such as grain size, internal strain and crystal structure. Thus, studies on the synthesis of nanostructured materials with controlled microstructure are necessary for a significant improvement in magnetic properties. It is well known that when Fe-Co alloy undergoes ordering transformation, soft magnetic properties could be obtained. There are many reports that the magnetic properties of the materials can be changed with variation of grain size. In the present work, nanostructured Fe-50at.%Co alloy powder produced by hydrogen reduction process (HRP) starting with two oxide powder mixtures of $Fe_2O_3\;and\; Co_3O_4$. The mean grain size of the HRP powders was about 40 nm and coercivity of the: powders was about 43 Oe.

구리를 함유하지 않은 친환경 자동차 브레이크 패드의 마모 특성에 관한 연구 (A Study on the Wear Properties of Cu-free Ecofriendly Vehicle Brake Pad)

  • 김기봉;양상선;이성주;황석훈;김신욱;김용진
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.30-35
    • /
    • 2018
  • The friction characteristics of Al-Fe alloy powders are investigated in order to develop an eco-friendly friction material to replace Cu fiber, a constituent of brake-pad friction materials. Irregularly shaped Al-Fe alloy powders, prepared by gas atomization, are more uniformly dispersed than conventional Cu fiber on the brake pad matrix. The wear rate of the friction material using Al-8Fe alloy powder is lower than that of the Cu fiber material. The change in friction coefficient according to the friction lap times is 7.2% for the Cu fiber, but within 3.8% for the Al-Fe alloy material, which also shows excellent judder characteristics. The Al-Fe alloy powders are uniformly distributed in the brake pad matrix and oxide films of Al and Fe are homogeneously formed at the friction interface between the disc and pad, thus exhibiting excellent friction and lubrication characteristics. The brake pad containing Al-Fe powders avoids contamination by Cu dust, which is generated during braking, by replacing the Cu fiber while maintaining the friction and lubrication performance.