• 제목/요약/키워드: Fe thin film

검색결과 634건 처리시간 0.024초

Flexible AM-OLED를 위한 OTFT 기술 기반의 MIS 구조 C-V 특성 분석 (Analysis of C-V Characteristics of MIS Structure Based on OTFT Technology for Flexible AM-OLED)

  • 김중석;김병민;장종현;주병권;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.77-78
    • /
    • 2006
  • 최근 flexible OLED의 구동에 사용하기 위한 유기박막트랜지스터(Organic Thin Film Transistor, OTFT)의 연구에서는 용매에 용해되어 spin coating이 가능한 재료의 개발에 관심을 두고 있다. 현재 pentacene으로는 아직 spin coating으로 제작할 수 있는 상용화된 제품이 없고 spin coating이 가능한 활성층 물질(active material)로 P3HT가 쓰이고 있다. 본 연구에서는 용해 가능한 P3HT 활성층 물질과 여러 종류의 용해 가능한 게이트 절연물(gate insulator, Gl)을 사용하여 안정된 소자를 구현할 수 있는 공정을 개발하는 목적으로 metal-insulator-semironductor(MIS) 소자를 제작하여 C-V 특성을 측정하고 분석하였다. 먼저 7mm${\times}$7mm 크기의 pyrex glass 시편 위에 바닥 전극으로 $1600{\AA}$ Au을 증착하고 spin coating 방식을 이용하여 PVP, PVA, PVK, BCB, Pl의 5종류의 게이트 절연층을 각각 형성하였고 그 위에 같은 방법으로 P3HT를 코팅하였다. P3HT 코팅 시 bake 공정의 유무와 spin rpm의 변화에 따른 P3HT의 두께를 측정하였다. Gl의 종류별로 주파수에 따른 capatltancc를 측정하여 비교, 분석하였다. C-V 측정 결과 PVP, PVA, PVK, BCB, Pl의 단위 면적당 capacitance 값은 각각 1.06, 2.73, 2.94, 3.43, $2.78nF/cm^2$로 측정되었다. Threshold voltage, $V_{th}$는 각각 -0.4, -0.7, -1.6, -0.1, -0.2V를 나타냈다. 주파수에 따른 capacitance 변화율을 측정한 결과 Gl 물질 모두 주파수가 높을수록 capacitance가 점점 감소하는 경향을 보였으나 1${\sim}$2nF 이내의 범위에서 작은 변화율만 나타냈다. P3HT의 두께와 bake 온도를 변화시켜 C-V 값을 측정한 결과 차이는 없었다. FE-SEM으로 관찰한 결과에서도 두께나 온도에 따른 P3HT의 표면 morphology 차이를 확인할 수 없었다. 본 연구에서 PVK와 P3HT의 조합이 수율(yield)면에서 가장 안정적이면서 $3.43\;nF/cm^2$의 가장 높은 capacitance 값을 나타내고 $V_{th}$ 값 또한 -1.6V로 가장 낮은 값을 보였다.

  • PDF

펄스 레이저 증착법으로 제작한 $(Bi,La)_4Ti_3O_{12}$ 박막의 미세구조 및 전기적 특성 (Microstructure and Electrical Properties of $(Bi,La)_4Ti_3O_{12}$ Thin Film Fabricated by Pulsed Laser Deposition Method)

  • 김영민;유효선;강일;길남제;장건익;권순용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.277-277
    • /
    • 2007
  • $(Bi,La)_4Ti_3O_{12}$ (BLT) 물질은 결정 방향에 따른 강한 이방성의 강유전 특성을 나타낸다. 따라서 BLT 박막을 이용하여 FeRAM 소자 등을 제작하기 위해서는 결정의 방향성을 세심하게 제어하는 것이 매우 중요하다. 현재까지 연구된 BLT 박막의 방향성 조절 결과를 보면, BLT 박막을 스핀 코팅 법 (spin coating method)으로 중착하고, 핵생성 열처리 단계를 조절하여 무작위 방향성 (random orientation)을 갖는 박막을 제조하는 방법이 일반적이었다. 그런데 이러한 스핀 코팅법에서의 핵생성 단계의 제어는 공정 조건 확보가 너무 어려운 단점이 있다. 이러한 어려움을 극복할 수 있는 대안은 스퍼터링 증착법 (sputtering deposition method), PLD법 (pulsed laser deposition method) 등과 같은 PVD (physical vapor deposition) 법의 증착방법을 적용하는 것이다. PVD 법으로 증착하는 경우에는 이미 박막 내에 무수한 결정핵이 존재하기 때문에 핵생성 단계가 필요 없게 된다. PVD 증착법의 적용을 위해서는 타겟 (target)의 제조 및 평가 실험이 선행되어야 한다. 그런데 벌크 BLT 재료의 소결공정 조건과 전기적 특성에 관한 연구 결과는 거의 발표 되지 않고 있다. 본 실험에서는 $Bi_2O_3$, $TiO_2$ and $La_2O_3$ 분말을 이용하여 최적의 조성을 구하기 위하여 Bi양을 변화시키며 타겟을 제조 하였다. 혼합된 분말을 하소 후 pallet 형태로 성형하여 소결을 실시하였다. 시편을 1mm 두께로 연마하고, 표면에 silver 전극을 인쇄하여 전기적 특성을 측정하였다. Bi양이 3.28몰 첨가된 조성에서 최대의 잔류분극 (2Pr) 값을 얻었고, 이때의 값은 약 $18{\mu}C/cm^2$ 정도였다. 최적화된 조성 ($Bi_{3.28}La_{0.75}Ti_3O_{12}$)으로 BLT 타겟을 제조하여 PLD법으로 박막을 제조하였다. 박막 제조 시 압력은 $1{\times}10^{-1}\;{\sim}\;1{\times}10^{-4}\;Torr$ 범위에서 변화시켰다. $1{\times}10^{-1}\;Torr$ 압력을 제외하고는 모든 압력에서 BLT 박막이 증착되었다. 중착된 박막을 $650\;{\sim}\;800^{\circ}C$에서 30분간 열처리를 실시하고 전기적 특성을 평가한 결과, $1{\times}10^{-2}\;Torr$에서 증착한 박막에서 양호한 P-V (polarization-voltage) 이력곡선을 얻을 수 있었고, 이때의 잔류분극 (2Pr) 값은 약 $6\;{\mu}C/cm^2$ 이었다. 주사전자현미경 (SEM)을 이용하여 BLT 박막 표면의 미세구조도 관찰하였는데, 스핀코팅 법으로 증착한 경우에 관찰되었던 조대화된 입자들은 관찰되지 않았고, 상당히 양호한 입자 크기 균일도를 나타내었다.

  • PDF

나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구 (Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process)

  • 김종률;최용윤;박종성;송오성
    • 대한금속재료학회지
    • /
    • 제46권11호
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

10 nm-Ni 층과 비정질 실리콘층으로 제조된 저온공정 나노급 니켈실리사이드의 물성 변화 (Property of Nickel Silicides with 10 nm-thick Ni/Amorphous Silicon Layers using Low Temperature Process)

  • 최용윤;박종성;송오성
    • 대한금속재료학회지
    • /
    • 제47권5호
    • /
    • pp.322-329
    • /
    • 2009
  • 60 nm- and 20 nm-thick hydrogenated amorphous silicon (a-Si:H) layers were deposited on 200 nm $SiO_2/Si$ substrates using ICP-CVD (inductively coupled plasma chemical vapor deposition). A 10 nm-Ni layer was then deposited by e-beam evaporation. Finally, 10 nm-Ni/60 nm a-Si:H/200 nm-$SiO_2/Si$ and 10 nm-Ni/20 nm a-Si:H/200 nm-$SiO_2/Si$ structures were prepared. The samples were annealed by rapid thermal annealing for 40 seconds at $200{\sim}500^{\circ}C$ to produce $NiSi_x$. The resulting changes in sheet resistance, microstructure, phase, chemical composition and surface roughness were examined. The nickel silicide on a 60 nm a-Si:H substrate showed a low sheet resistance at T (temperatures) >$450^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate showed a low sheet resistance at T > $300^{\circ}C$. HRXRD analysis revealed a phase transformation of the nickel silicide on a 60 nm a-Si:H substrate (${\delta}-Ni_2Si{\rightarrow}{\zeta}-Ni_2Si{\rightarrow}(NiSi+{\zeta}-Ni_2Si)$) at annealing temperatures of $300^{\circ}C{\rightarrow}400^{\circ}C{\rightarrow}500^{\circ}C$. The nickel silicide on the 20 nm a-Si:H substrate had a composition of ${\delta}-Ni_2Si$ with no secondary phases. Through FE-SEM and TEM analysis, the nickel silicide layer on the 60 nm a-Si:H substrate showed a 60 nm-thick silicide layer with a columnar shape, which contained both residual a-Si:H and $Ni_2Si$ layers, regardless of annealing temperatures. The nickel silicide on the 20 nm a-Si:H substrate had a uniform thickness of 40 nm with a columnar shape and no residual silicon. SPM analysis shows that the surface roughness was < 1.8 nm regardless of the a-Si:H-thickness. It was confirmed that the low temperature silicide process using a 20 nm a-Si:H substrate is more suitable for thin film transistor (TFT) active layer applications.