• Title/Summary/Keyword: Fe oxide

Search Result 1,369, Processing Time 0.154 seconds

Influence of the Precipitation Medium and Ultrasonic Wave on the Synthesis of Iron Oxide (산화철 합성에 미치는 침전제와 초음파의 영향)

  • Lim, Jong-Ho;Kim, Tae-Hyun;Lee, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.11
    • /
    • pp.687-691
    • /
    • 2006
  • Synthesis of Iron oxides by air oxidation of $FeSO_4$ solutions in the presence of NaOH, Diethylenetriamine (DETA), Butylamine (BA) and influence of ultrasonic wave were investigated by XRD, SEM and particle size analyzer. As the DETA addition increased to 0.05 mol, $Fe_3O_4$ was formed with goethite($\alpha$- FeOOH) and $Fe_3O_4$ single phase was formed above 0.18mol of DETA. As the BA addition increased, the XRD peak intensity of (020) face of lepidocrocite($\gamma$-FeOOH) was developed until the formation of $Fe_3O_4$ and reduced the size of the iron oxide particles formed. Ultrasonic wave reduced the size of the iron oxide particles but gave little effects on the iron oxide particles synthesized by amine.

Oxidation of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-0.45%C Alloys at 550-650 ℃

  • Park, Soon Yong;Xiao, Xiao;Kim, Min Ji;Lee, Geun Taek;Hwang, Dae Ho;Woo, Young Ho;Lee, Dong Bok
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.53-61
    • /
    • 2022
  • Alloys of Fe-(5.3-29.8)%Mn-(1.1-1.9)%Al-(0.4-0.5)%C were oxidized at 550 ℃ to 650 ℃ for 20 h to understand effects of alloying elements on oxidation. Their oxidation resistance increased with increasing Mn level to a small extent. Their oxidation kinetics changed from parabolic to linear when Mn content was decreased and temperature was increasing. Oxide scales primarily consisted of Fe2O3, Mn2O3, and MnFe2O4 without any protective Al-bearing oxides. During oxidation, Fe, Mn, and a lesser amount of Al diffused outward, while oxygen diffused inward to form internal oxides. Both oxide scales and internal oxides consisted of Fe, Mn, and a small amount of Al. The oxidation of Mn and carbon transformed γ-matrix to α-matrix in the subscale. The oxidation led to the formation of relatively thick oxide scales due to inherently inferior oxidation resistance of alloys and the formation of voids and cracks due to evaporation of manganese, decarburization, and outward diffusion of cations across oxides.

Association of wheezing phenotypes with fractional exhaled nitric oxide in children

  • Shim, Jung Yeon
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.5
    • /
    • pp.211-216
    • /
    • 2014
  • Asthma comprises a heterogeneous group of disorders characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR). Airway inflammation, which induces AHR and recurrence of asthma, is the main pathophysiology of asthma. The fractional exhaled nitric oxide (FeNO) level is a noninvasive, reproducible measurement of eosinophilic airway inflammation that is easy to perform in young children. As airway inflammation precedes asthma attacks and airway obstruction, elevated FeNO levels may be useful as predictive markers for risk of recurrence of asthma. This review discusses FeNO measurements among early-childhood wheezing phenotypes that have been identified in large-scale longitudinal studies. These wheezing phenotypes are classified into three to six categories based on the onset and persistence of wheezing from birth to later childhood. Each phenotype has characteristic findings for atopic sensitization, lung function, AHR, or FeNO. For example, in one birth cohort study, children with asthma and persistent wheezing at 7 years had higher FeNO levels at 4 years compared to children without wheezing, which suggested that FeNO could be a predictive marker for later development of asthma. Preschool-aged children with recurrent wheezing and stringent asthma predictive indices also had higher FeNO levels in the first 4 years of life compared to children with wheezing and loose indices or children with no wheeze, suggesting that FeNO measurements may provide an additional parameter for predicting persistent wheezing in preschool children. Additional large-scale longitudinal studies are required to establish cutoff levels for FeNO as a risk factor for persistent asthma.

High Temperature Oxidation of ${Fe_3}Al-4Cr$ Alloys (${Fe_3}Al-4Cr$ 합금의 고온산화)

  • Kim, Gi-Young;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.34-38
    • /
    • 2001
  • Intermetallics of Fe-28%Al($Fe_3Al$) and Fe-28%Al-4%Cr($Fe_3Al-4Cr$) were oxidized at 1073, 1273 and 1473k in air for up to 17 days. The oxidation resistance of$Fe_3Al-4Cr$ was basically similar to or better than that of $Fe_3Al$. The oxide scales formed on $Fe_3Al$ consisted essentially of pure ${\alpha}-AL_2O_3$, while those formed on $Fe_3Al-4Cr$ consisted of ${\alpha}-AL_2O_3$ having dissolved iron and chromium ions. The preferential outward diffusion of substrate elements to form the outer oxide layer led to the formation of Kirkendall voids at the oxide-matrix interface. The scales formed on $Fe_3Al(-4Cr)$ were thin and dense up to 1273K, but they spalled easily at 1473K, accompanied by more weight gains.

  • PDF

Characteristics of Heavy Metals In Contaminated Soil-Metal Binding Mechanism through Sequential Extraction in Soils with Lead and Copper (Sequential Extraction을 이용한 중금속(납.구리)과 토양 결합 기작 연구)

  • 조미영;현재혁;김원석
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.3
    • /
    • pp.77-84
    • /
    • 1999
  • Sequential extraction was applied to characterize the soil-metal binding mechanism in three kinds of soils contaminated with lead and copper The results showed that soil-metal binding was dependent on soil characteristics and metal species. In Munwha dong soil, lead was mainly carbonate form (37.7%), in agriculture soil was associated with amorphous Fe oxide form (23.9%) and in industry area was associated with exchangeable form (22.9%) Meanwhile for copper. organically bound form represented main fraction in most soil and also carbonate and amorphous Fe oxide form showed high fraction. Crystallized Fe oxide and residuals form of copper showed higher fraction than those of lead. Thus, it can be concluded that copper is bound with soil stronger and more difficult wash out Consequently, this mechanism analysis through sequential extraction can provide useful informations for better soil remediation.

  • PDF

Bloating mechanism for coal ash with iron oxide (철분이 많이 함유된 석탄회의 발포거동)

  • Lee, Ki Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study was to figure out the impacts of iron oxide types and dosages to bloating when producing artificial lightweight aggregates by utilization of recycled resources such as bottom-ash, reject-ash and dredgedsoil. In order to figure out chemical characteristics of raw materials, XRD and XRF analyses were performed. 50 wt% of dredged-soil, 15 wt% of bottom-ash and 35wt.% of reject-ash were mixed, then the amount of iron oxide was varied at 5 to 30 wt% with intervals of 5 wt% with $Fe_2O_3$ and $Fe_3O_4$ respectively. As molded aggregates were sintered by rapid sintering in intervals of $40^{\circ}C$ from $1060^{\circ}C$ to $1180^{\circ}C$, specific gravity and water absorption were measured. As a result, the artificial lightweight aggregate with iron oxide of 10~15 vol% showed the lowest specific gravity, and it was identified that the more iron oxide vol% increases, the more specific gravity increases because of liquid phase sintering.

Dislocation-oxide interaction in Y2O3 embedded Fe: A molecular dynamics simulation study

  • Azeem, M. Mustafa;Wang, Qingyu;Li, Zhongyu;Zhang, Yue
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.337-343
    • /
    • 2020
  • Oxide dispersed strengthened (ODS) steel is an important candidate for Gen-IV reactors. Oxide embedded in Fe can help to trap irradiation defects and enhances the strength of steel. It was observed in this study that the size of oxide has a profound impact on the depinning mechanism. For smaller sizes, the oxide acts as a void; thus, letting the dislocation bypass without any shear. On the other hand, oxides larger than 2 nm generate new dislocation segments around themselves. The depinning is similar to that of Orowan mechanism and the strengthening effect is likely to be greater for larger oxides. It was found that higher shear deformation rates produce more fine-tuned stress-strain curve. Both molecular dynamics (MD) simulations and BKS (Bacon-Knocks-Scattergood) model display similar characteristics whereby establishing an inverse relation between the depinning stress and the obstacle distance. It was found that (110)oxide || (111)Fe (oriented oxide) also had similar characteristics as that of (100)oxide || (111)Fe but resulted in an increased depinning stress thereby providing greater resistance to dislocation bypass. Our simulation results concluded that critical depinning stress depends significantly on the size and orientation of the oxide.

Development of Fe-12%Cr Mechanical-Alloyed Nano-Sized ODS Heat-Resistant Ferritic Alloys

  • 김익수;최병영
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.265-265
    • /
    • 1999
  • The development of mechanical alloying (MA)-oxide dispersion strengthened (ODS) heat-resistant ferritic alloys of Fe-12%Cr with W, Ti and Y₂O₃additions were carried out. Fe-12%Cr alloys with 3%W, 0.4%Ti and 0.25% Y₂O₃additions showed a much finer and more uniform dispersion of oxide particles among the alloy system studied. Nano-sized oxides dispersed in the alloys suppress the grain growth during annealing at a high temperature and resulted in the remarkable improvement of creep strength. The oxide phase was identified as a complex oxide type of Y-Ti-O.

High-Temperature Oxidation of Ti Containing Stainless Steel in O2-N2 Atmosphere

  • Onishi, Hidenori;Saeki, Isao;Furuichi, Ryusaburo;Okayama, Toru;Hanamatsu, Kenko;Shibayama, Tamaki;Takahashi, Heishichiro;Kikkawa, Shinichi
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.140-147
    • /
    • 2004
  • High temperature oxidation of Fe-19Cr and Fe-19Cr-0.2Ti alloys is studied at 1173-1373 K in 16.5 kPa $O_2$ - balances $N_2$ atmosphere aimed at clarifying the effect of titanium addition. Oxidation rate of Fe-19Cr alloy was accelerated with titanium. For both alloys chromium rich $(Fe,\;Cr)_2O_3$ was formed as a major oxidation product. On Fe-19Cr-0.2Ti alloy, a thin layer composed of spinel type oxide and titanium oxide was also formed and an internal oxidation of titanium was observed. Titanium was concentrated at the oxide surface and internal oxidation zone but a small amount of titanium was also found in the intermediate corundum type $(Fe,\;Cr)_2O_3$ layer. Crystals of corundum type $(Fe,\;Cr)_2O_3$ formed on Fe-19Cr alloy are coarse but that formed on Fe-19Cr -0.2Ti alloys were fine and columnar. Reason for the difference in oxidation kinetics and crystal structure will be discussed relating to the distribution of aliovalent titanium in corundum type $(Fe,\;Cr)_2O_3$ oxide layer.

A Thermogravimetric Study of the Non-stoichiometry of Iron-Doped Nicked Oxide$(Ni_{1-x}Fe_x)1-{\delta}$O

  • Krafft, Kunt N.;Martin, Manfred
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.156-161
    • /
    • 1998
  • We have measured changes of the non-stoichiometry, $\Delta\delta$, in Fe-doped nicked oxide , by thermogravimetry for four iron fractions, x=0.01, 0.031, 0.057 and 0.10, and three temperatures, T=1273, 1373 and 1473 K. The obtained data can be modelled by a defect structure in which substitutional trivalent iron ions, FeNi, are compensated by cation vacancies, $V_{Ni}$", and (4:1)-clusters. These clusters consist of tetravalent interstitial iron, $Fe_i\;^4$

  • PDF