• Title/Summary/Keyword: Fe mineralization

Search Result 138, Processing Time 0.02 seconds

Geochemical Exploration Technics in the Pungchon Limestone Area (풍촌 석회암지대 탐사에 적용될 새 지화학탐사법 연구)

  • Moon, Kun Joo
    • Economic and Environmental Geology
    • /
    • v.23 no.4
    • /
    • pp.369-381
    • /
    • 1990
  • Most of significant ore deposits in South Korea such as the Sangdong W - Mo, the Yeonhwa Pb-Zn and the Geodo Cu-Fe skarn ore deposits occur at the southern limb of the Hambaeg syncline in the Taebaeg Basin. The mineralization took place in the interbedded limestone of the Myobong Formation and the Pungchon limestone of the Great Limestone Group of the Cambrian age, generally striking E-W and dipping 25-30 degrees north. There are no outcrops of the skarn-type orebody at the northern limb of the syncline. In order to find a clue of a possible hidden orebody localized at the limestones in the northern limb, a lithogeochemical exploration by using carbon isotope and some elements such as Si, Ca, Fe and Al at the Sangdong Mine area has been attempted as for a modelling study. For this study, 45 samples from the Pungchon limestone which do not show any megascopic indication of mineralization have been taken in both the mineralized zone and the unminerallized zone at the Sangdong Mine area. Analytical data show that there are big differences in the contents of CaO and $Al_2O_3$ between the Pungchon limestone of the mineralized zone and that of the unmineralized zone. Carbon isotope data exhibit that ${\delta}^{13}C$ values of the Pungchon limestone in the mineralized zone are highter than those in the unmineralized zone. The difference in the analytical values of CaO, $Al_2O_3$ and the carbon isotope between the mineralized and the unmineralized zones is as follows ; Unminerallized zone Mineralized zone CaO 51.3% 43.5% $Al_2O_3$ 0.6% 2.4% ${\delta}^{13}C$ -0.39 permil -0.56 permil $Fe_2O_3$ 0.9% 1.4% $SiO_2$ 3.0% 2.4% The decrease in the Si content of the Pungchon limestone in the mineralized zone is contrary to the result of the previous study (Moon, 1987). On the basis of identification of the increase in the Al content of the limestone in the mineralized zone, it could be deduced that the decrease in the Si content of the Pungchon limestone might be due to the result of increase in the alteration products mainly occurred along fracture-system such as joint cracks or minor faults and that the phenomena shown by the Si and Al content in the mineralized zone might be derived from the thermal effect of granite extended mineralizing activity to the overlied limestone on the surface. Higher mean values of Fe and Al as well as lower mean values of carbon content and the ${\delta}^{13}C$ than mean values of those in the Pungchon limestone at the northern limb of the Hambaeg Syncline may be applicable in exploration for blind orebodies.

  • PDF

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

A Fluid inclusion study of the Sannae granite and the associated Sannae W-Mo deposit, Southeastern Kyongsang Basin (경상분지 남동부의 산내화강암과 산내 W-MO 광상에 관한 유체포유물 연구)

  • 양경희;이준동
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.46-55
    • /
    • 1999
  • Fluid inclusions in granite and hydrothermal quartz indicate that three fluids have affected the Sannae granite. The earliest fluid is represented by three-phase aqueous fluid inclusions with high salinity (38 to 46 wt.% NaCl equiv.). It was exsolves from a crystallizing melt and trapped at a relatively high-pressure condition. The secong fluid is represented by two-phase aqueous fluid inclusion with low entectic temperatures (< $-40^{\circ}C$). low- to moderate salinity (3 to 24.0 wt.% NaCl equiv.) and high homogenization temperatures$ ($309^{\circ}C$$473^{\circ}C$)($. This fluid was trapped at higher pressures than 300-500 bars and precipitated molybdenite and wolframite in quartz veins. It was probably generted by fluid-host rock interactions since they show a wide range of salinity within a narrow range of homogenization temperatures. The final fluid is represented by an aquenous fluid boiling that separated into high-salinity (34-38 wt.% NaCl equiv.) and low-salinity fluid (0 to 8.7 wt.%) at $303-376^{\circ}C$ and 50-150 bars. These boiling fluids precipitated euhedral quartz in miarolitic cavities. The compositions of the final fluid was rather complex in the $H_2$O-NaCl-KCI-$FeCl_2$ system. The Sannae granite was a locus for repeated fluid events including magmatic fluids during the final stage of crystallization, the convection of hydrothermal fluids causing a fluid ascending, fluid boiling, and the local W-Mo mineralization and formation of miarolitic cavities due to thermal, tectonic and compositional properties of the felsic granite.

  • PDF

A Study on the Genesis of Eonyang Amethyst Deposits (언양(彦陽) 자수정 광상(鑛床)의 성인(成因)에 관한 연구(硏究))

  • Youn, Seok-Tai;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.335-343
    • /
    • 1994
  • The Eonyang amethyst deposits are composed of vug quartz emplaced in the Eonyang granites of Mesozoic Cretaceous age. The Eonyang granites are composed of biotite granite, porphyritic biotite granite, aplite and miarolitic granite. The petrochemical data of the Eonyang granites show the trend of subalkaline magma, calc-alkaline magma, I-type granitoid and magnetite series. The vug quartz show the characteristic growth zoning (white quartz-smoky quartz-amethyst) from wall side. Generally fluid inclusions in the vug quartz can be divided into four main types based on compositions (I-type: gas inclusion, II-type: liquid inclusion, III-type: polyphase inclusion, IV-type: liquid $CO_2$-bearing inclusion). Solid phase of polyphase inclusions are halite(NaCl), sylvite(KCl), hematite ($Fe_2O_3$) and unknown anisotropic solid. Homogenization temperatures inferred from the fluid inclusion study ranges from $440^{\circ}C$ to $485^{\circ}C$ in white quartz, from $227^{\circ}C$ to $384^{\circ}C$ in smoky quartz, from $133^{\circ}C$ to $186^{\circ}C$ in amethyst, respectively. Salinities of fluid inclusions in each mineralization stages ranges from 40 wt.% to 58 wt.% in white and smoky quartz, from 1.0 wt.% to 8.7 wt.% in amethyst respectively. A consideration of the pressure regime during vug quartz deposition based on the boiling evidence suggests lithostatic pressure of less than 72 bars. This range of pressure indicate that vug quartz lay at depth of 750 m below the surface at the during mineralization.

  • PDF

Mineralogy and Geochemistry of the Jeonheung and Oksan Pb-Zn-Cu Deposits, Euiseong Area (의성(義城)지역 전흥(田興) 및 옥산(玉山) 열수(熱水) 연(鉛)-아연(亞鉛)-동(銅) 광상(鑛床)에 관한 광물학적(鑛物學的)·지화학적(地化學的) 연구(硏究))

  • Choi, Seon-Gyu;Lee, Jae-Ho;Yun, Seong-Taek;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.4
    • /
    • pp.417-433
    • /
    • 1992
  • Lead-zinc-copper deposits of the Jeonheung and the Oksan mines around Euiseong area occur as hydrothermal quartz and calcite veins that crosscut Cretaceous sedimentary rocks of the Gyeongsang Basin. The mineralization occurred in three distinct stages (I, II, and III): (I) quartz-sulfides-sulfosalts-hematite mineralization stage; (II) barren quartz-fluorite stage; and (III) barren calcite stage. Stage I ore minerals comprise pyrite, chalcopyrite, sphalerite, galena and Pb-Ag-Bi-Sb sulfosalts. Mineralogies of the two mines are different, and arsenopyrite, pyrrhotite, tetrahedrite and iron-rich (up to 21 mole % FeS) sphalerite are restricted to the Oksan mine. A K-Ar radiometric dating for sericite indicates that the Pb-Zn-Cu deposits of the Euiseong area were formed during late Cretaceous age ($62.3{\pm}2.8Ma$), likely associated with a subvolcanic activity related to the volcanic complex in the nearby Geumseongsan Caldera and the ubiquitous felsite dykes. Stage I mineralization occurred at temperatures between > $380^{\circ}C$ and $240^{\circ}C$ from fluids with salinities between 6.3 and 0.7 equiv. wt. % NaCl. The chalcopyrite deposition occurred mostly at higher temperatures of > $300^{\circ}C$. Fluid inclusion data indicate that the Pb-Zn-Cu ore mineralization resulted from a complex history of boiling, cooling and dilution of ore fluids. The mineralization at Jeonheung resulted mainly from cooling and dilution by an influx of cooler meteoric waters, whereas the mineralization at Oksan was largely due to fluid boiling. Evidence of fluid boiling suggests that pressures decreased from about 210 bars to 80 bars. This corresponds to a depth of about 900 m in a hydrothermal system that changed from lithostatic (closed) toward hydrostatic (open) conditions. Sulfur isotope compositions of sulfide minerals (${\delta}^{34}S=2.9{\sim}9.6$ per mil) indicate that the ${\delta}^{34}S_{{\Sigma}S}$ value of ore fluids was ${\approx}8.6$ per mil. This ${\delta}^{34}S_{{\Sigma}S}$ value is likely consistent with an igneous sulfur mixed with sulfates (?) in surrounding sedimentary rocks. Measured and calculated hydrogen and oxygen isotope values of ore-forming fluids suggest meteoric water dominance, approaching unexchanged meteoric water values. Equilibrium thermodynamic interpretation indicates that the temperature versus $fs_2$ variation of stage I ore fluids differed between the two mines as follows: the $fs_2$ of ore fluids at Jeonheung changed with decreasing temperature constantly near the pyrite-hematite-magnetite sulfidation curve, whereas those at Oksan changed from the pyrite-pyrrhotite sulfidation state towards the pyrite-hematite-magnetite state. The shift in minerals precipitated during stage I also reflects a concomitant $fo_2$ increase, probably due to mixing of ore fluids with cooler, more oxidizing meteoric waters. Thermodynamic consideration of copper solubility suggests that the ore-forming fluids cooled through boiling at Oksan and mixing with less-evolved meteoric waters at Jeonheung, and that this cooling was the main cause of copper deposition through destabilization of copper chloride complexes.

  • PDF

Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea (무주 승륭 아연광상의 광석광물과 생성환경)

  • Yeom, Taesun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • The geology of the Seungryung Zn deposit, located in the Muzu basin, consists of Precambrian leucocratic granitic gneiss, Cretaceous clastic rocks, pyroclastic rocks, and intrusive rocks. The deposit shows a weakly skarnized hydrothermal replacement ore developed along limestone bed in the gneiss. The mineralization can be divided into three stages: the early skarnization producing garnet and pyroxene, the main mineralization in the middle stage precipitating most metallic minerals such as magnetite, sphalerite, chalcopyrite, pyrrhotite, Pb-Ag-Bi-S system minerals, and the late stage for altered or low temperature minerals such as chlorite and marcasite. Pb-Ag-Bi-S system minerals include heyrovskite-eskimoite solid solution, lillianite-gustavite solid solution, and vikingite. Chalcopyrite diseases are quite common in sphalerite showing bead chains and dusting textures. The ${\delta}^{34}S$ values of sulfides minerals are concentrated within the narrow range of 3.4~4.1‰ for pyrite, 3.3~4.3‰ for sphalerite, 4.0~4.3‰ for chalcopyrite, and 2.8‰ for galena, suggesting that most sulfur is of igneous origin. Sulfur isotope geothermometry is calculated to be $346{\sim}431^{\circ}C$, implying that the mineralization occurred at relatively high temperature. FeS contents of sphalerite are relatively high in the range of 6.58~20.16 mole% (avg. 16.58 mole%) with the enrichment of Mn compared to Cd, similarly to representative skarn Pb-Zn deposits in South Korea. On the contrary, sphalerite from Au-Ag deposits in the Seolcheon mineralized zone around the Seungryung deposit is enriched in Cd, showing similar feature like representative epithermal Au-Ag deposits. This suggests that around the related igneous rocks, magnetite and sphalerite were produced at high temperature in the Seungryung deposit, and with decreasing temperature and compositional change of mineralizing fluids, Au-Ag mineralization proceeded in the Seolcheon mineralized zone.

Stannite from the Janggun Mine, Republic of Korea -Contributions to the Knowledge of Ore-Forming Minerals in the Janggun Lead-Zinc-Silver (3)- (한국(韓國) 장군광산(將軍鑛山)의 황석석(黃錫石)에 대(對)하여 -장군(將軍) 연(鉛)·아연(亞鉛)·은(銀) 광석광물(鑛石鑛物)의 지식(知識)에의 기여(寄與) (3)-)

  • Lee, Hyun Koo;Imai, Naoya
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.121-130
    • /
    • 1986
  • In the Janggun mine, stannite occurs as anhedral grains, up to 500 micrometer in long dimension, closely associated with sphalerite, chalcopyrite, arsenopyrite, pyrrhotite, galena and rhodochrosite in the periphery of the South ore body. In reflected light, stannite is grayish yellow green in color and exhibits moderate bireflectance and strong anisotropism without any intenal reflections. Reflection; Rmax. =29.0, Rmin. =27.8 percent at a wavelength of 560nm, and VHN; 219~244kg/mm at a 50g load. The chemical composition on the average from 35 spot analyses by electron microprobe is, Cu 28.0, Fe 12.7, Zn 2.9, Mn 0.2, Sn 25.8, S 30.3, sum 99.9 (all in weight percent); the corresponding chemical formula as calculated on the basis of total atoms=8 is, Cu 1.88 Fe 0.97 Zn 0.19 Mn 0.02 Sn 0.93 S 4.01, which fulfills approximately the ideal formula of $Cu_2FeSnS_4$. The strongest reflections on the X-ray diffraction patterns are; $3.10{\AA}$ (10) (112), $2.72{\AA}$ (5) (020, 004), $1.922{\AA}$ (5) (024), $1.642{\AA}$ (3) (132), $1.244{\AA}$ (3) (143, 136, 235), $1.111{\AA}$(3) (244), $0.958{\AA}$ (1) (048, 422), the patterns are identical with those of literature. From the textural evidence of the microscopic observation, the mineral is considered to have been formed at the middle stage of hydrothermal lead-zinc-silver mineralization.

  • PDF

Geologic and Fluid Inclusion Studies of Chongyang Tungsten Ore Deposits, South Korea (청양중석광상(靑陽重石鑛床)의 지질(地質)과 유체포유물(流體包有物)에 의(依)한 온도측정(溫度測定)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 1977
  • Chongyang tungsten ore deposits, one of the most important tungsten mines in South Korea, me open space filling hydrothermal vein deposits embedded in Precambrian biotite gneiss and, Cretaceous (?) granite porphyry. Some wolframite-bearing quartz veins are closely associated with -quartz porphyries which strike about $N15^{\circ}-25^{\circ}W$ and dip $800^{\circ}SE$ to vertical. Mineralization took place in near vertical vein systems of 5 to 2000 meter long in the biotite gneiss and granite porphyry stock during early Cretaceous and Tertiary (?) period. The hydrothermal mineral paragensis has indicated that there were two major stages: vein and vug stages. The principal vein mineral is wolframite in a gangue of quartz with small amount of fluorite, pyrite, beryl and carbonate minerals. Present in minor amounts are molybdenite, bithmuthinite, native bismuth, arsenopyrite, galena, chalcopyrite, pyrrhotite, sphalerite and scheelite. Fluid inclusion study from the minerls at Chongyang mine reveals that vein stage fluids attained a temperature range of $200^{\circ}C-355^{\circ}C$ and vug stage $160^{\circ}C-350^{\circ}C$. The filling temperatures show the higher range of $200^{\circ}-355^{\circ}C$ in quartz and $280^{\circ}C-348^{\circ}C$ in beryls, whereas the lower emperature range of $283^{\circ}C-295^{\circ}C$ in rhodochrosite and $160^{\circ}-253^{\circ}C$ in fluorites. These temperatures are in reasonably good agreement with mineral paragnesis in this ore deposits. Volfamite minerals were analysed for major components. $WO_3$, MnO and FeO by wet chemical method. Chemical analysis indicates that they contain 70.56-71.54% $WO_3$, 8.52-10.01% MnO and 10.00-11.58% FeO. MnO/FeO ratios of wolframites shows the range of 0.78-0.94 which maybe indicates a comparatively high temperature type of hydrothermal deposits.

  • PDF

Enhanced photocatalytic oxidation of humic acids using Fe3+-Zn2+ co-doped TiO2: The effects of ions in aqueous solutions

  • Yuan, Rongfang;Liu, Dan;Wang, Shaona;Zhou, Beihai;Ma, Fangshu
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.181-188
    • /
    • 2018
  • Photocatalytic oxidation in the presence of Fe-doped, Zn-doped or Fe-Zn co-doped $TiO_2$ was used to effectively decompose humic acids (HAs) in water. The highest HAs removal efficiency (65.7%) was achieved in the presence of $500^{\circ}C$ calcined 0.0010% Fe-Zn co-doped $TiO_2$ with the Fe:Zn ratio of 3:2. The initial solution pH value, inorganic cations and anions also affected the catalyst photocatalytic ability. The HAs removal for the initial pH of 2 was the highest, and for the pH of 6 was the lowest. The photocatalytic oxidation of HAs was enhanced with the increase of the $Ca^{2+}$ or $Mg^{2+}$ concentration, and reduced when concentrations of some anions increased. The inhibition order of the anions on $TiO_2$ photocatalytic activities was $CO{_3}^{2-}$ > $HCO_3{^-}$ > $Cl^-$, but a slightly promotion was achieved when $SO{_4}^{2-}$ was added. Total organic carbon (TOC) removal was used to evaluate the actual HAs mineralization degree caused by the $500^{\circ}C$ calcined 0.0010% Fe-Zn (3:2) co-doped $TiO_2$. For tap water added with HAs, the $UV_{254}$ and TOC removal rates were 57.2% and 49.9%, respectively. The $UV_{254}$ removal efficiency was higher than that of TOC because of the generation of intermediates that could significantly reduce the $UV_{254}$, but not the TOC.

Morphology and Trace Element Distribution in Pyrite: Implications for the Exploration of Pb-Zn Deposit (황철석내 미량원소 분포 및 형태: 연-아연 광상의 탐사에 대한 적용)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.3
    • /
    • pp.139-153
    • /
    • 2024
  • Recently, resources-rich advanced countries are putting more effort into mineral resource exploration as mineral resource depletion worsens along with deepening resource nationalism regarding mineral resources. Therefore, one of the methods used to explore mineral resources is to explore through the chemical composition of mineral. Pyrite, which is formed throughout the mineralization process and regardless of the mineral commodity type, is widely used as major geochemical indicator in mineral deposit exploration using content and list of trace elements in the pyrite. In this paper, the author aims to report on indicator elements that can be used when exploring lead-zinc orebody by studying the occurrence and chemical composition of pyrites from wallrock, wallrock alteration and lead-zinc orebody in the Janggun lead-zinc deposit. This deposit is hydrothermal replacement deposit formed by reaction of lead and zinc-bearing hydrothermal fluid and Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this hydrothermal replacement orebody consists of mainly rhodochrositization with minor of dolomitization, pyritization, sericitization and chloritization. Pyrite, which is occurred from wallrock, wallrock alteration, and lead-zinc orebody, is classified into three types (Py I type, Py II type, and Py III type) based on the texture, occurrence and paragenetic relationship. Pyrite on the basis of paragenetic sequence are as followed : Py I type (wallrock and wallrock alteration) → Py II type (wallrock alteration and Pb-Zn orebody) → Py III type (wallrock alteration and Pb-Zn orebody). Trace elements with a large content change in pyrite by all types are Mn, As, Ag, Sb and Pb elements, but trace elements with a small content change in pyrite are Zn, Cu, Cd, Se, Te, Co, Ni, Au, In and Sn elements. The substitution of these elements in all pyrite types is as followed: Fe2+↔Co2+ substitution (Py I type), 3Fe2+↔Ag1++(Mn2++Ni2++As2+)+(As3++Sb3+) substitution (Py II type) and 3Fe2+↔Ag1++(Mn2++As2++Pb2+)+(Mn3++As3++Sb3+), S1-↔(As1-+Sb1-) substitution (Py III type). This means that Mn, As, Sb, Ag and Pb elements were enriched during evolution of hydrothermal fluid. Therefore, based on the above research results, pyrite is a useful mineral for exploration of lead-zinc orebody. And when exploring lead-zinc orebody with similar geological conditions, lead-zinc orebody is explored through the enrichment of as indicator elements.