DOI QR코드

DOI QR Code

Morphology and Trace Element Distribution in Pyrite: Implications for the Exploration of Pb-Zn Deposit

황철석내 미량원소 분포 및 형태: 연-아연 광상의 탐사에 대한 적용

  • Bong Chul Yoo (Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 유봉철 (한국지질자원연구원 희소금속광상연구센터)
  • Received : 2024.09.11
  • Accepted : 2024.09.30
  • Published : 2024.09.30

Abstract

Recently, resources-rich advanced countries are putting more effort into mineral resource exploration as mineral resource depletion worsens along with deepening resource nationalism regarding mineral resources. Therefore, one of the methods used to explore mineral resources is to explore through the chemical composition of mineral. Pyrite, which is formed throughout the mineralization process and regardless of the mineral commodity type, is widely used as major geochemical indicator in mineral deposit exploration using content and list of trace elements in the pyrite. In this paper, the author aims to report on indicator elements that can be used when exploring lead-zinc orebody by studying the occurrence and chemical composition of pyrites from wallrock, wallrock alteration and lead-zinc orebody in the Janggun lead-zinc deposit. This deposit is hydrothermal replacement deposit formed by reaction of lead and zinc-bearing hydrothermal fluid and Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this hydrothermal replacement orebody consists of mainly rhodochrositization with minor of dolomitization, pyritization, sericitization and chloritization. Pyrite, which is occurred from wallrock, wallrock alteration, and lead-zinc orebody, is classified into three types (Py I type, Py II type, and Py III type) based on the texture, occurrence and paragenetic relationship. Pyrite on the basis of paragenetic sequence are as followed : Py I type (wallrock and wallrock alteration) → Py II type (wallrock alteration and Pb-Zn orebody) → Py III type (wallrock alteration and Pb-Zn orebody). Trace elements with a large content change in pyrite by all types are Mn, As, Ag, Sb and Pb elements, but trace elements with a small content change in pyrite are Zn, Cu, Cd, Se, Te, Co, Ni, Au, In and Sn elements. The substitution of these elements in all pyrite types is as followed: Fe2+↔Co2+ substitution (Py I type), 3Fe2+↔Ag1++(Mn2++Ni2++As2+)+(As3++Sb3+) substitution (Py II type) and 3Fe2+↔Ag1++(Mn2++As2++Pb2+)+(Mn3++As3++Sb3+), S1-↔(As1-+Sb1-) substitution (Py III type). This means that Mn, As, Sb, Ag and Pb elements were enriched during evolution of hydrothermal fluid. Therefore, based on the above research results, pyrite is a useful mineral for exploration of lead-zinc orebody. And when exploring lead-zinc orebody with similar geological conditions, lead-zinc orebody is explored through the enrichment of as indicator elements.

최근들어, 자원 선진국들은 광물자원에 대한 자원민족주의 심화와 함께 광물자원 고갈이 심해짐에 따라 광물자원 탐사에 한층 더 심혈을 기울이고 있다. 그래서 광물자원 탐사에 이용되는 방법 중의 하나는 광물의 화학조성을 통해 탐사하는 방법이다. 황철석은 광화작용 전반에 걸쳐 산출되고 광종에 관계없이 산출되는 광물로써 그 광물내 미량원소들의 종류 및 함량변화가 광상 탐사에 주요 지화학적 지시자들로써 많이 활용되고 있다. 저자는 이 논문에서 장군 연-아연 광상의 모암, 모암변질대 및 연-아연 광체에서 산출되는 황철석의 산상과 화학조성 변화 등을 연구함으로써 연-아연 광체 탐사 시 활용할 수 있는 지시원소들에 대해 보고하고자 한다. 이 광상은 모암인 고생대의 장군석회암층에 연-아연 열수용액과의 반응에 의해 형성된 열수교대형 광상이다. 이 열수교대형 광상의 연-아연 광화작용과 관련된 모암변질작용은 주로 능망간석화작용과 일부 돌로마이트화작용, 황철석화작용, 견운모화작용 및 녹니석화작용 등이 관찰된다. 모암, 모암변질대 및 연-아연 광체에서 산출되는 황철석은 조직, 산상 및 선후관계 등을 근거로 3가지 유형(Py I형, Py II형 및 Py III형)으로 분류되며 광화작용이 진행됨에 따라 Py I형에서 Py II형을 걸쳐 Py III형으로 산출된다. 각 유형별 황철석내 미량원소의 함량 변화가 큰 원소는 Mn, As, Ag, Sb 및 Pb 원소들이며 함량 변화가 작은 원소는 Zn, Cu, Cd, Se, Te, Co, Ni, Au, In 및 Sn 원소들이다. 각 유형별 황철석내 미량원소들은 각각 Fe2+↔Co2+ 치환(Py I형), 3Fe2+↔Ag1+ +(Mn2++Ni2++As2+)+(As3++Sb3+) 치환(Py II 형)과 3Fe2+↔Ag1++(Mn2++As2++Pb2+)+(Mn3++As3++Sb3+), S1-↔(As1-+Sb1-) 치환(Py III형)이 관찰되는데 이는 연-아연 광화작용 말기로 감에 따라 상대적으로 Mn, As, Sb, Ag 및 Pb 원소들이 부화되었음을 의미한다. 따라서 상기 연구 결과를 토대로, 황철석은 연-아연 광체 탐사에 유용한 광물이며 또한 Mn, As, Sb, Ag 및 Pb 원소들은 유사한 지질조건을 갖는 연-아연 광체 탐사 시 부화정도에 따라서 연-아연 광체 탐사 지시원소로서 활용할 수 있을 것이다.

Keywords

Acknowledgement

우선 이 연구를 수행하게 시료들을 제공해 주신 충남대 이현구 명예교수님께 진심으로 감사드립니다. 이 연구는 한국지질자원연구원 기본사업인 "K-배터리 원료광물(Ni, Co) 잠재성 평가 및 활용기술 개발(24-3215) 과제"와 "국내 기반암 잠재적 유해원소 통합관리 및 유해성 평가(24-3121) 과제" 지원을 받아 수행되었다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 편집위원장님, 책임편집위원님 및 두분의 심사위원님들께 깊이 감사드립니다.

References

  1. Abraitis, P.K., Pattrick, R.A.D. and Vaughan, D.J., 2004, Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74, 41-59. 
  2. Berner, R.A., 1970, Sedimentary pyrite formation. American Journal of Science, 268, 1-23. 
  3. Carvalho, J.R.S., Relvas, J.M.R.S., Pinto, A.M.M., Frenzel, M., Krause, J., Gutzmer, J., Pacheco, N., Fonseca, R., Santos, S., Caetano, P., Reis, T. and Goncalves, M., 2018, Indium and selenium distribution in the Neves-Corvo deposit, Iberian pyrite belt, Portugal. Mineralogical Magazine, 82, S5-S41. 
  4. Chen, Y., Li, H., Halassane, N., Ghaderi, M., Gu, S., Wang, Y. and Li, D.D., 2024, Pyrite geochemistry reveals the key controlling factors of large gold deposit formation in Jiao-dong peninsula: A comparative study. Ore Geology Reviews, 165, 105934. 
  5. Cook, N.J. and Chryssoulis, S.L., 1990, Concentrations of invisible Au in the common sulfides. Canadian Mineralogist, 28, 1-16. 
  6. Deditius, A.P., Reich, M., Kesler, S.E., Utsonomiya, S., Chryssoulis, S.L., Walshe, J. and Ewing, R.C., 2014, The coupled geochemistry of Au and As pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644-670. 
  7. Deditius, A.P., Utsunomiya, S., Renock, D., Ewing, R.C., Ramana, C.V., Becker, U. and Kesler, S.E., 2008, A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919-2933. 
  8. Fan, L., Wang, G., Holzheid, A., Zoheir, B., Shi, X. and Lei, Q., 2022, Systematic variations in trace element composition of pyrites from the 26oS hydrothermal field, Mid-Atlantic ridge. Ore Geology Reviews, 148, 105006. 
  9. Fleet, M.E., Chryssoulis, S.L., Maclean, P.J., Davidson, R. and Weisener, C.G., 1993, Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. Canadian Mineralogist, 31, 1-17. 
  10. Fleischer, M., 1955, Minor elements in some sulphide minerals. Economic Geology, 15th Anniversary, 970-1024. 
  11. Gregory, D.D., Cracknell, M.J., Large, R.R., McGoldrick, P., Kuhn, S., Maslennikov, V.V., Baker, M.J., Fox, N., Belousov, I., Figueroa, M.C., Steadman, J.A., Fabris, A.J. and Lyons, T.W., 2019, Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Economic Geology, 114, 771-786. 
  12. Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R. and Both, R.A., 1995, Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, 1167-1196. 
  13. Hwang, I.C., 1968, Report on the Sam Han Chang Gun manganese deposits. Mining Geology, 1, 9-34. 
  14. Keith, M., Smith, D.J., Jenkin, G.R., Holwell, D.A. and Dye, M.D., 2018, A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes. Ore Geology Reviews, 96, 269-282. 
  15. Kim, J.Y., 2010, Geochemical and mineralogical characterization of the abandoned Janggun mine, Korea. Master dissertation, Andong National University, 88p. 
  16. Kho, S.J., 1987, Exploration and development in the Janggun Pb-Zn mine. Mining Geology, 20, 289-303. 
  17. Kusebauch, C., Oelze, M. and Gleeson, S., 2018, Partitioning of arsenic between hydrothermal fluids and pyrite during experimental siderite replacement. Chemical Geology, 500, 136-147. 
  18. Kutzschbach, M., Dunkel, F., Kusebauch, C., Schiperski, F., Borner, F., Drake, H., Klimm, K. and Keith, M., 2024, Arsenicpoor fluids promote strong As partitioning into pyrite. Geochimica et Cosmochimica Acta, 376, 37-53. 
  19. Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B. and Foster, J., 2009, Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104, 635-668. 
  20. Large, R.R., Mukherjee, I., Gregory, D.D., Steadman, J.A., Maslennikov, V.V. and Meffre, S., 2017, Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: Implications for ore genesis in sedimentary basins. Economic Geology, 112, 423-450. 
  21. Large, S.J.E., Bakker, E.Y.N., Weis, P., Walle, M., Ressel, M. and Heinrich, C.A., 2016, Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend. Geology, 44, 1015-1018. 
  22. Lee, C.H., Song, S.H. and Lee, H.K., 1996, Mg-skarn minerals from magnetite deposits of the Janggun mine, Korea. Economic and Environmental Geology, 29, 11-19. 
  23. Lee, H.K., 1980, Studies on the complex sulphide-sulphosalt ores from the Janggun mine, Republic of Korea. Ph.D.thesis of Waseda University, Japan, 329p. 
  24. Lee, H.K., 1985, Hydrothermal manganese enrichment of the Janggun carbonate rocks at the Janggun mine, Republic of Korea. Chungnam Journal of Sciences, 12, 99-111. 
  25. Lee, H.K. and Imai, N., 1993, Boulangerite from the Janggun mine, Republic of Korea; Contributions to the knowledge of ore-forming minerals in the Janggun Lead-Zinc-Silver ores (2). Mining Geology, 26, 129-134. 
  26. Lee, H.K., Ko, S.J. and Imai, N., 1990, Genesis of the leadzinc-silver and iron deposits of the Janggun mine, as related to their structural features: Structural control and wallrock alteration of ore formation. Mining Geology, 23, 161-181. 
  27. Lee, H.K., Lee, C.H. and Kim, S.J., 1998a, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita, 33, 379-390. 
  28. Lee, H.K., Lee, C.H. and Lee, C.H., 1998b, Geochemical environment for Pb-Zn-Ag mineralization of the Janggun mine. The 53th Meeting and General Assembly of the Geological Societty of Korea, 60-61. 
  29. Majzlan, J. and Filella, M., 2024, What do we know about the natural sources, transport and sinks of antimony in the environment?. Geochemistry, 84, 126072. 
  30. Mathieu, L., 2019, Detecting magmatic-derived fluids using pyrite chemistry: Example of the Chibougamau area, Abitibi Subprovince, Quebec. Ore Geology Reviews, 114, 103127. 
  31. Megaw, P.K.M., Ruiz, J. and Titley, S.R., 1988, High-temperature, carbonate-hosted Ag-Pb-Zn(Cu) deposits of northern Mexico. Economic Geology, 83, 1856-1885. 
  32. Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005, World skarn deposits. Society of Economic Geologists, Economic Geology 100th Anniversary volume, 299-336. 
  33. Pan, P., Wang, X.F., Li, B., Tang, G. and Xiang, Z.P., 2024, Trace element compositions of pyrite and stibnite: implications for the genesis of antimony mineralization in the Yangla Cu skarn deposit, Northwestern Yunnan, China. Acta Geochimica, 43, 535-554. 
  34. Qi, Y.Q., Hu, R.H., Gao, J.F., Leng, C.B., Gao, W. and Gong, H.T., 2022, Trace and minor elements in sulfides from the Lengshuikeng Ag-Pb-Zn deposit, South China: A LA-ICPMS study. Ore Geology Reviews, 141, 104663. 
  35. Qian, G.J., Brugger, J., Skinner, W.M., Chen, G.R. and Pring, A., 2010, An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300o C. Geochimica et Cosmochimica Acta, 74, 5610-5630. 
  36. Qian, G., Brugger, J., Testemale, D., Skinner, W. and Pring, A., 2013, Formation of As (II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta, 100, 1-10. 
  37. Qiu, G.H., Gao, T.Y., Hong, J., Luo, Y., Liu, L.H., Tan, W.F. and Liu, F., 2018, Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions. Geochimica et Cosmochimica Acta, 228, 205-219. 
  38. Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R.C., 2005, Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796. 
  39. Roberts, F.I., 1982, Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization. Journal of Geochemical Exploration, 17, 49-62. 
  40. Simmons, S.F., White, N.C. and John, D.A., 2005, Geological characteristics of epithermal precious and base metal deposits. Society of Economic Geologists, Economic Geology 100th Anniversary volume, 485-522. 
  41. Su, W., Heinrich, C.A., Pettke, T., Zhang, X., Hu, R. and Xia, B., 2009, Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids. Economic Geology,. 104, 73-93. 
  42. Su, W.C., Xia, B., Zhan, H.T., Zhang, X.C. and Hu, R.Z., 2008, Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation. Ore Geology Reviews, 33, 667-679. 
  43. Su, W., Zhang, H., Hu, R., Ge, X., Xia, B., Chen, Y. and Zhu, C., 2012, Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes. Mineralium Deposita, 47, 653-662. 
  44. Steadman, J.A., Large, R.R., Olin, P.H., Danyushevsky, L.V., Meffre, S., Huston, D., Fabris, A., Lisisin, V. and Wells, T., 2021, Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Geology Reviews, 128, 103878. 
  45. Taivalkoski, A., Ranta, J.P., Sarala, P., Nikkola, P., Liu, X., Kalubowila, C., Immonen, N., Gilbricht, S. and Molnar, F., 2024, Mineral exploration using trace elements composition of pyrite grains from till: A case study from the Petajaselka Au occurrence, northern Finland. Journal of Geochemical Exploration, 257, 107359. 
  46. Vaughan, D.J. and Craig, J.R., 1978, Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge.
  47. Yoo, B.C., 2012, Element dispersion by the wallrock alteration of Janggun lead-zinc-silver deposit. Economic and Environmental Geology, 45, 623-641. 
  48. Yoo, B.C., 2022, Occurrence and chemical composition of white mica from wallrock alteration zone of Janggun PbZn deposit. Korean Journal of Mineralogy and Petrology, 35, 469-484. 
  49. Yoo, B.C., 2023, Occurrence and chemical composition of carbonate mineral from wallrock alteration zone of Janggun Pb-Zn deposit. Korean Journal of Mineralogy and Petrology, 36, 167-183. 
  50. Zhang, W.D., Li, B., Lu, A.H., Zhao, K.D., Elatikpo, S.M., Chen, X.D., Zhu, L. and Yu, M., 2022, In-situ pyrite trace element and sulfur isotope characteristics and metallogenic implications of the Qixiashan Pb-Zn-Ag polymetallic deposit, Eastern China. Ore Geology Reviews, 144, 104849.