Acknowledgement
우선 이 연구를 수행하게 시료들을 제공해 주신 충남대 이현구 명예교수님께 진심으로 감사드립니다. 이 연구는 한국지질자원연구원 기본사업인 "K-배터리 원료광물(Ni, Co) 잠재성 평가 및 활용기술 개발(24-3215) 과제"와 "국내 기반암 잠재적 유해원소 통합관리 및 유해성 평가(24-3121) 과제" 지원을 받아 수행되었다. 바쁘신 와중에도 이 논문의 미비점을 지적, 수정하여 주신 편집위원장님, 책임편집위원님 및 두분의 심사위원님들께 깊이 감사드립니다.
References
- Abraitis, P.K., Pattrick, R.A.D. and Vaughan, D.J., 2004, Variations in the compositional, textural and electrical properties of natural pyrite: a review. International Journal of Mineral Processing, 74, 41-59.
- Berner, R.A., 1970, Sedimentary pyrite formation. American Journal of Science, 268, 1-23.
- Carvalho, J.R.S., Relvas, J.M.R.S., Pinto, A.M.M., Frenzel, M., Krause, J., Gutzmer, J., Pacheco, N., Fonseca, R., Santos, S., Caetano, P., Reis, T. and Goncalves, M., 2018, Indium and selenium distribution in the Neves-Corvo deposit, Iberian pyrite belt, Portugal. Mineralogical Magazine, 82, S5-S41.
- Chen, Y., Li, H., Halassane, N., Ghaderi, M., Gu, S., Wang, Y. and Li, D.D., 2024, Pyrite geochemistry reveals the key controlling factors of large gold deposit formation in Jiao-dong peninsula: A comparative study. Ore Geology Reviews, 165, 105934.
- Cook, N.J. and Chryssoulis, S.L., 1990, Concentrations of invisible Au in the common sulfides. Canadian Mineralogist, 28, 1-16.
- Deditius, A.P., Reich, M., Kesler, S.E., Utsonomiya, S., Chryssoulis, S.L., Walshe, J. and Ewing, R.C., 2014, The coupled geochemistry of Au and As pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644-670.
- Deditius, A.P., Utsunomiya, S., Renock, D., Ewing, R.C., Ramana, C.V., Becker, U. and Kesler, S.E., 2008, A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72, 2919-2933.
- Fan, L., Wang, G., Holzheid, A., Zoheir, B., Shi, X. and Lei, Q., 2022, Systematic variations in trace element composition of pyrites from the 26oS hydrothermal field, Mid-Atlantic ridge. Ore Geology Reviews, 148, 105006.
- Fleet, M.E., Chryssoulis, S.L., Maclean, P.J., Davidson, R. and Weisener, C.G., 1993, Arsenian pyrite from gold deposits: Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS. Canadian Mineralogist, 31, 1-17.
- Fleischer, M., 1955, Minor elements in some sulphide minerals. Economic Geology, 15th Anniversary, 970-1024.
- Gregory, D.D., Cracknell, M.J., Large, R.R., McGoldrick, P., Kuhn, S., Maslennikov, V.V., Baker, M.J., Fox, N., Belousov, I., Figueroa, M.C., Steadman, J.A., Fabris, A.J. and Lyons, T.W., 2019, Distinguishing ore deposit type and barren sedimentary pyrite using laser ablation-inductively coupled plasma-mass spectrometry trace element data and statistical analysis of large data sets. Economic Geology, 114, 771-786.
- Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R. and Both, R.A., 1995, Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II. Selenium levels in pyrite: Comparison with δ34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, 1167-1196.
- Hwang, I.C., 1968, Report on the Sam Han Chang Gun manganese deposits. Mining Geology, 1, 9-34.
- Keith, M., Smith, D.J., Jenkin, G.R., Holwell, D.A. and Dye, M.D., 2018, A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes. Ore Geology Reviews, 96, 269-282.
- Kim, J.Y., 2010, Geochemical and mineralogical characterization of the abandoned Janggun mine, Korea. Master dissertation, Andong National University, 88p.
- Kho, S.J., 1987, Exploration and development in the Janggun Pb-Zn mine. Mining Geology, 20, 289-303.
- Kusebauch, C., Oelze, M. and Gleeson, S., 2018, Partitioning of arsenic between hydrothermal fluids and pyrite during experimental siderite replacement. Chemical Geology, 500, 136-147.
- Kutzschbach, M., Dunkel, F., Kusebauch, C., Schiperski, F., Borner, F., Drake, H., Klimm, K. and Keith, M., 2024, Arsenicpoor fluids promote strong As partitioning into pyrite. Geochimica et Cosmochimica Acta, 376, 37-53.
- Large, R.R., Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B. and Foster, J., 2009, Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology, 104, 635-668.
- Large, R.R., Mukherjee, I., Gregory, D.D., Steadman, J.A., Maslennikov, V.V. and Meffre, S., 2017, Ocean and atmosphere geochemical proxies derived from trace elements in marine pyrite: Implications for ore genesis in sedimentary basins. Economic Geology, 112, 423-450.
- Large, S.J.E., Bakker, E.Y.N., Weis, P., Walle, M., Ressel, M. and Heinrich, C.A., 2016, Trace elements in fluid inclusions of sediment-hosted gold deposits indicate a magmatic-hydrothermal origin of the Carlin ore trend. Geology, 44, 1015-1018.
- Lee, C.H., Song, S.H. and Lee, H.K., 1996, Mg-skarn minerals from magnetite deposits of the Janggun mine, Korea. Economic and Environmental Geology, 29, 11-19.
- Lee, H.K., 1980, Studies on the complex sulphide-sulphosalt ores from the Janggun mine, Republic of Korea. Ph.D.thesis of Waseda University, Japan, 329p.
- Lee, H.K., 1985, Hydrothermal manganese enrichment of the Janggun carbonate rocks at the Janggun mine, Republic of Korea. Chungnam Journal of Sciences, 12, 99-111.
- Lee, H.K. and Imai, N., 1993, Boulangerite from the Janggun mine, Republic of Korea; Contributions to the knowledge of ore-forming minerals in the Janggun Lead-Zinc-Silver ores (2). Mining Geology, 26, 129-134.
- Lee, H.K., Ko, S.J. and Imai, N., 1990, Genesis of the leadzinc-silver and iron deposits of the Janggun mine, as related to their structural features: Structural control and wallrock alteration of ore formation. Mining Geology, 23, 161-181.
- Lee, H.K., Lee, C.H. and Kim, S.J., 1998a, Geochemistry and mineralization age of magnesian skarn-type iron deposits of the Janggun mine, Republic of Korea. Mineralium Deposita, 33, 379-390.
- Lee, H.K., Lee, C.H. and Lee, C.H., 1998b, Geochemical environment for Pb-Zn-Ag mineralization of the Janggun mine. The 53th Meeting and General Assembly of the Geological Societty of Korea, 60-61.
- Majzlan, J. and Filella, M., 2024, What do we know about the natural sources, transport and sinks of antimony in the environment?. Geochemistry, 84, 126072.
- Mathieu, L., 2019, Detecting magmatic-derived fluids using pyrite chemistry: Example of the Chibougamau area, Abitibi Subprovince, Quebec. Ore Geology Reviews, 114, 103127.
- Megaw, P.K.M., Ruiz, J. and Titley, S.R., 1988, High-temperature, carbonate-hosted Ag-Pb-Zn(Cu) deposits of northern Mexico. Economic Geology, 83, 1856-1885.
- Meinert, L.D., Dipple, G.M. and Nicolescu, S., 2005, World skarn deposits. Society of Economic Geologists, Economic Geology 100th Anniversary volume, 299-336.
- Pan, P., Wang, X.F., Li, B., Tang, G. and Xiang, Z.P., 2024, Trace element compositions of pyrite and stibnite: implications for the genesis of antimony mineralization in the Yangla Cu skarn deposit, Northwestern Yunnan, China. Acta Geochimica, 43, 535-554.
- Qi, Y.Q., Hu, R.H., Gao, J.F., Leng, C.B., Gao, W. and Gong, H.T., 2022, Trace and minor elements in sulfides from the Lengshuikeng Ag-Pb-Zn deposit, South China: A LA-ICPMS study. Ore Geology Reviews, 141, 104663.
- Qian, G.J., Brugger, J., Skinner, W.M., Chen, G.R. and Pring, A., 2010, An experimental study of the mechanism of the replacement of magnetite by pyrite up to 300o C. Geochimica et Cosmochimica Acta, 74, 5610-5630.
- Qian, G., Brugger, J., Testemale, D., Skinner, W. and Pring, A., 2013, Formation of As (II)-pyrite during experimental replacement of magnetite under hydrothermal conditions. Geochimica et Cosmochimica Acta, 100, 1-10.
- Qiu, G.H., Gao, T.Y., Hong, J., Luo, Y., Liu, L.H., Tan, W.F. and Liu, F., 2018, Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions. Geochimica et Cosmochimica Acta, 228, 205-219.
- Reich, M., Kesler, S.E., Utsunomiya, S., Palenik, C.S., Chryssoulis, S.L. and Ewing, R.C., 2005, Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69, 2781-2796.
- Roberts, F.I., 1982, Trace element chemistry of pyrite: A useful guide to the occurrence of sulfide base metal mineralization. Journal of Geochemical Exploration, 17, 49-62.
- Simmons, S.F., White, N.C. and John, D.A., 2005, Geological characteristics of epithermal precious and base metal deposits. Society of Economic Geologists, Economic Geology 100th Anniversary volume, 485-522.
- Su, W., Heinrich, C.A., Pettke, T., Zhang, X., Hu, R. and Xia, B., 2009, Sediment-hosted gold deposits in Guizhou, China: products of wall-rock sulfidation by deep crustal fluids. Economic Geology,. 104, 73-93.
- Su, W.C., Xia, B., Zhan, H.T., Zhang, X.C. and Hu, R.Z., 2008, Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for the environment and processes of ore formation. Ore Geology Reviews, 33, 667-679.
- Su, W., Zhang, H., Hu, R., Ge, X., Xia, B., Chen, Y. and Zhu, C., 2012, Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposit, Guizhou, China: implications for gold depositional processes. Mineralium Deposita, 47, 653-662.
- Steadman, J.A., Large, R.R., Olin, P.H., Danyushevsky, L.V., Meffre, S., Huston, D., Fabris, A., Lisisin, V. and Wells, T., 2021, Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Geology Reviews, 128, 103878.
- Taivalkoski, A., Ranta, J.P., Sarala, P., Nikkola, P., Liu, X., Kalubowila, C., Immonen, N., Gilbricht, S. and Molnar, F., 2024, Mineral exploration using trace elements composition of pyrite grains from till: A case study from the Petajaselka Au occurrence, northern Finland. Journal of Geochemical Exploration, 257, 107359.
- Vaughan, D.J. and Craig, J.R., 1978, Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge.
- Yoo, B.C., 2012, Element dispersion by the wallrock alteration of Janggun lead-zinc-silver deposit. Economic and Environmental Geology, 45, 623-641.
- Yoo, B.C., 2022, Occurrence and chemical composition of white mica from wallrock alteration zone of Janggun PbZn deposit. Korean Journal of Mineralogy and Petrology, 35, 469-484.
- Yoo, B.C., 2023, Occurrence and chemical composition of carbonate mineral from wallrock alteration zone of Janggun Pb-Zn deposit. Korean Journal of Mineralogy and Petrology, 36, 167-183.
- Zhang, W.D., Li, B., Lu, A.H., Zhao, K.D., Elatikpo, S.M., Chen, X.D., Zhu, L. and Yu, M., 2022, In-situ pyrite trace element and sulfur isotope characteristics and metallogenic implications of the Qixiashan Pb-Zn-Ag polymetallic deposit, Eastern China. Ore Geology Reviews, 144, 104849.