• Title/Summary/Keyword: Fe doping

Search Result 208, Processing Time 0.044 seconds

The Doping and Plasma Effects on Gas Sensing Properties of α-Fe2O3 Thin Film

  • Choi, J.Y.;Jang, G.E.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.5
    • /
    • pp.189-193
    • /
    • 2004
  • Pure and Sn or Pt doped $\alpha-Fe_2O_3$ thin films were prepared on $Al_2O_3$ substrates by RF-magnetron sputtering method and the sensitivities were compared. It was found that pure $\alpha-Fe_2O_3$ thin films did not exhibit much selectivity in CO and $i-C_4H_{10}$ gases while it showed the high sensitivity in proportion to the gas concentration of $C_2H_{5}OH$ gas. Pt-doped $\alpha-Fe_2O_3$ showed to be alike sensing properties as pure $\alpha-Fe_2O_3$ thin film in $C_2H_{5}OH$ gas. However, Sn-doped $\alpha-Fe_2O_3$ thin films exhibited the excellent sensitivity and selectivity in Hz gas. After microstructure modification by plasma etching on pure $\alpha-Fe_2O_3$ thin films, the gas sensing characteristics were dramatically changed.

First-Principles Study of Magnetic Interactions between Transition Metal Ions in ZnO (ZnO내 전이 금속 불순물의 자기적 특성에 관한 제일원리 연구)

  • Lee, Eun-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.444-448
    • /
    • 2010
  • Based on first-principles calculations, we study the magnetic properties of Co, Ni, Fe, V, and Mn impurities in ZnO. The stabilities of the ferromagnetic state and the magnetic moment of each impurity largely depend on the amount of doped electron or hole. For lightly doped n-type ZnO, it is found that the doping of Ni ions is the most effective for inducing ferromagnetism, while Fe ions show the most stable ferromagnetic couplings for heavily doped n-type samples. The characteristics of the magnetic interactions of Co ions are similar with those of Fe ions, but Co ions require much larger amount of doped electron than Fe ions to show the ferromagnetic couplings. The ferromagnetic coupling between Mn and V ions is unstable in n-type conditions.

Kinetics and Mechanisms of the Oxidation of Carbon Monoxide on Ni-Doped $\alpha-Fe_2O_3$

  • Kim, Keu-Hong;Jun, Jong-Ho;Choi, Jae-Shi
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.41-44
    • /
    • 1984
  • The oxidation of carbon monoxide has been investigated on Ni-doped ${\alpha}-Fe_2O_3$ catalyst at 300 to $450^{\circ}$. The oxidation rates have been correlated with 1.5-order kinetics; first with respect to CO and 1/2 with respect to $O_2$. Carbon monoxide is adsorbed on lattice oxygen of Ni-doped ${\alpha}-Fe_2O_3$, while oxygen appears to be adsorbed on oxygen vacancy formed by Ni-doping. The conductivities show that adsorption of CO on O-lattice produces conduction electron and adsorption of $O_2$ on O-vacancy withdraws the conduction electron from vacancy. The adsorption process of CO on O-lattice is rate-determining step and dominant defect of Ni-doped ${\alpha}-Fe_2O_3$ is suggested from the agreement between kinetic and conductivity data.

Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries (리튬이온전지에서 새로운 양극재료를 위한 금속인산화물)

  • ;Yet Ming Chiang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF

A Study on the Characteristics of Ammonia Doped Plasma Polymer Thin Film with a Controlled Plasma Power

  • Seo, Hyeon-Jin;Hwang, Gi-Hwan;Ju, Dong-U;Yu, Jeong-Hun;Lee, Jin-Su;Jeon, So-Hyeon;Nam, Sang-Hun;Yun, Sang-Ho;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.242.2-242.2
    • /
    • 2014
  • Plasma-polymer thin films (PPTF) have been deposited on a Si(100) wafer and glass under several conditions such as different RF power by using plasma-enhanced chemical vapor deposition (PECVD) system. Ethylcyclohexane, ammonia gas, hydrogen and argon were utilized as organic precursor, doping gas, bubbler gas and carrier gases, respectively. PPTFs were grown up with RF (ratio frequency using 13.56 MHz) powers in the range of 20~60 watt. PPTFs were characterized by FT-IR (Fourier Transform Infrared), FE-SEM (Scanning Electron Microscope), AFM (Atomic Force Microscope), Contact angle and Probe station. The result of FT-IR measurement showed that the PPTFs have high cross-link density nitrogen doping ratio was also changed with a RF power increasing. AFM and FE-SEM also showed that the PPTFs have smooth surface and thickness. Impedance analyzer was utilized for the measurements of C-V curves having different dielectric constant as RF power.

  • PDF