• Title/Summary/Keyword: Fe contamination

Search Result 232, Processing Time 0.031 seconds

Assessment of heavy metals in sediments of Shitalakhya River, Bangladesh

  • Al-Razee, A.N.M.;Abser, Md. Nurul;Mottalib, Md. Abdul;Rahman, Md. Sayadur;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.210-216
    • /
    • 2019
  • Concentrations of Cu, Zn, Fe, Mn, Ni and Cr have been estimated in sediments of the Shitalakhya River at Polash-Ghorashal area, Narsingdi, Bangladesh. 36 samples of sediments from nine sampling point at different locations of Shitalakhya River were collected to determine the concentration of Cu, Zn, Fe, Mn, Ni, Cr and the samples were analyzed by atomic absorption spectrophotometer (AAS). The obtained results were compared with national and international guidelines. The levels of heavy metal concentrations in sediments were found to decrease in the order of Fe > Mn > Zn > Ni > Cu > Cr, respectively. The heavy metal concentration in sediment of Shitalakhya was below the recommended safe limits of heavy metals by WHO, FAO and other international standards. Contamination factor (CF) of Zn and Cu at sampling point Fsd2 show higher (> 1) values due to the influence of external discrete sources like wastage catalysts of ZnO and CuO. Geo-accumulation index values of the study indicate as non-contaminated to moderately contaminate.

The controversial points for the assessment of soil contamination related to the change of pH of extraction solution in using partial extraction in standard method in Korea (국내 토양오염 공정시험방법의 용출법 사용시 용출액의 pH의 변화가 토양 오염 평가에 미치는 문제점)

  • 오창환;유연희;이평구;이영엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.294-297
    • /
    • 2000
  • Heavy metals are extracted from Chonju stream sediment, roadside soils and sediments along Honam expressway, soils and tailings from mining area using partial ectraction in Standard Method, partial ectraction method with maintaining 0.1N of extraction solution and acid digestion. In samples having buffer capacity against acid, 0.1N of extraction solution can not be maintained and pH of extraction solution increases up to 8.0 when partial extraction in Standard Method is used. The averages and ranges of (heavy metals extracted using partial extraction in standard method, HPE)/(heavy metals extracted using partial extraction method with maintaining 0.1N of extraction solution, HPEM) values are 0.506 and 0.145~1.126 in Cd, 0.534~ and 0.078~0.928 in Zn, 0.461 and 0.041~1.715 in Mn, 0.359 and 0.011~0.874 in Cu, 0.195 and 0.018~1.785 in Cr, 0.710 and 0.003~3.075 in Pb, and 0.088 and 1.73$\times$10$^{-5}$ ~0.303 in Fe. These data indicate that the difference between HPE and HPEM is big in the order of Fe, Cr, Cu, Mn, Cd, Zn and Pb. It is quite possible that the partial extraction method in Standard Method of soil in Korea is not adequate for an assessment of contamination in area where buffer capacity of soil will be decreased or lost after a long term exposure of soils to environmental damage.

  • PDF

Investigation of the groundwater contamination around landfill where slaughtered animals were buried

  • Bark, Jun-Jo;Jung, Hae-Sun;Woo, Jong-Tae;Lee, Sung-Sik
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.4
    • /
    • pp.459-467
    • /
    • 2006
  • This study was designed to investigate if there were groundwater contamination in 17 landfill where slaughtered animals were buried during the crisis of 2002 foot-and-mouth-disease (FMD) outbreaks in Gyeonggi province. From March to August 2005 groundwater was collected once a month from 17 sites, and examined with potential for hydrogen (pH), colour, turbidity, lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), copper (Cu), zinc (Zn) , iron (Fe), manganese (Mn) , aluminium (Al), nitrate-nitrogen $(NO_3-N)$, ammonia-nitrogen $(NH_3-N)$, microbial pathogen and Escherichia spp. In the examination of $NH_3-N$ which of the mean concentration was from not-detected (ND) to 0.05 mg/l. The range of $NH_3-N$ level was $0.3-24.1mg/{\ell}$. However, groundwater from four sites was to go beyond the drinking water quality standard (DWQS), i.e., the mean concentration of those were $15.5mg/{\ell}\;(site\;1),\;20.7mg/{\ell}\;(site\;9),\;24.1mg/{\ell}\;(site\;13)\;and\;10.6mg/{\ell}\;(site\;17)$. In the investigation of pH, colour and turbidity, all of the pH were below of DWQS (pH 5.8-6.6), but one site in color test and four sites in turbidity test were over the standard level. Among 9 metal ions examined, Mn was in excess of DWQS, and its concentration was $2.4mg/{\ell}$. Pb, Cd, Hg and As were not traced. The contents of Cu, Zn, Fe and Al were $ND-0.22mg/{\ell},\;0.01-0.05mg/{\ell},\;ND-0.05mg/{\ell}\;and\;0.03-0.16mg/{\ell}$, respectively. Escherichiae spp were not identified, but bacterial colonies were detected at 3 groundwater including 2 sites over the DWQS at the level of $491CFU/m{\ell}\;(site\;4)\;and\;217CFU/m{\ell}\;(site\;15)$.

Characteristics for Heavy Metal Pollution in Road Dust from Daebul Industrial Complex: Classification by Particle Size and Magnetic Separation (대불산업단지 도로먼지 내 중금속류 오염 특성: 입도와 자성에 따른 구분)

  • Jeong, Hyeryeong;Choi, Jin Young;Ra, Kongtae
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.4
    • /
    • pp.252-271
    • /
    • 2020
  • In this study, we investigated physical and chemical properties such as grain size, heavy metal pollution, magnetic properties, and their environmental impacts of road dusts (RD) collected from 14 sampling points in Daebul industrial Complex. Heavy metal concentrations in RD were in the order of Fe>Zn>Cu>Pb>Cr>Ni>As>Cd>Hg, and this pollution pattern was related to major industries and traffic activities in this area. The results of the correlation analysis between heavy metal elements and particle size in RD showed that Fe and all of analyzed heavy metals had a significant correlation with each other and metal concentrations had a significantly negative correlation (p<0.05). However, due to the input of large metal particles some heavy metal concentrations in the particle fraction of >1000 ㎛ were highest. Pollution load per unit area of this fraction was the highest among the grain size fractions. Cr, Ni, Cu, Zn, Cd, Pb levels in RD decreased and the levels of Cr, Ni, Cu, Zn, Cd, and Pb were reduced to 85 (As) -22 (Ni)% of the whole after removal of MFs fraction from RD. The mean heavy metal levels in the study area did not exceed the soil contamination guide value of Korea, indicating that heavy metal levels in RD were not a concern. However, at some sampling points, Zn concentrations were exceeded the soil contamination guide value for the 3rd areas of Korea and this result indicated that further studies of the impact of RD on the surrounding environment through re-suspension or non-point pollution, and of effective management methods are required.

The Characteristics of Heavy Metal Contamination in Tailings and Soils in the Vicinity of the Palbong Mine, Korea (팔봉광산 선광광미와 주변토양의 중금속 오염 특성)

  • 이영엽;정재일;권영호
    • Economic and Environmental Geology
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2001
  • The characteristics of the heavy metal contamination in the soils affected by the tailings of the Palbong mine have been studied. The soils in the studied area consist mostly of loam by the particle size analysis, but a little of it, located near the stream, consist of loamy sand to sandy loam, finally to loam downward. The organic contents of soils are significantly low aoom 2 percent and the pH is in acidic ranging 6.0 $\pm$ 0.1. The samples of the parent rocks, the normal soils, the tailings and the channel deposits from the studied area were chemically analysed. From the result, the heavy metal concenlration of the soils is a little Jow compared with that of the parent rocks, shows the hydrologic process of the surface and the groundwater. The contamination of the tailings from the ore mining are high in lead, copper and arsenic. In the channel deposits the concenlrations of lead and copper are abnormally high but that of arsenic is uniquely low. And most of heavy metal contamination are decreased with the distance from the mine. It is caused by the properties of the surface and the ground water during the process of the heavy metal migration. The correlation-coefficient between sand and silt contents and the concentrations of Cd, Cu and Pb are significant but the amounts of As and Hg are increased with the clay contents. The dispersion of the heavy metals with the distance shows that the concentrations of them in the soils sampled at distance of 100 m to 200 m along the stream started near the Palbong mine are extremely high compared with those from other distances. These discrepancies are significant in Cd, Cu, Pb and Hg, but low in As. All the samples contain below detection limit of Cr+6 In the present stream water the concentrations of the heavy metals are not detected. So, it is interpreted that the concentrations in the soils are caused by the activities of the mining during the operation and have been continued by the dispersion from the tailings since after the closure of the mining, especially by the surface and ground water. The concentrations are diminished with the distance from the mining site, but in the interval of 800-2000 m increases abruptly. In the soil samples counted on the dispersion direction by wind, the lowering of the concentration is relatively uniform with the distance from the mining site. So, the rapid increase of the heavy metal concentrations is presumed to have been caused by the ground-water movement. In the migration of the heavy metals, the groundwater conditions, such as pH, Eh, the contents of colloidal particles, and Mn and Fe oxides are closely involveo. Integrating with these factors, it is interpreted that the groundwater conditions which have caused the heavy metal contamination of the studied area are those that the pH is about 3 in oxidized conditions, the contents of the colloidal particles are low, and Mn and Fe oxides are not involved in the migration of the heavy metals. Meanwhile, the vegetables growing on the soils in the studied area are not affected by the contamination of the heavy metals.

  • PDF

Contamination Assessment of Water Quality and Stream Sediments Affected by Mine Drainage in the Sambo Mine Creek (삼보광산 수계 하천수질 및 퇴적토의 오염도 평가)

  • Jung, Goo-Bok;Kwon, Soon-Ik;Hong, Sung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Kim, Won-Il;Lee, Jong-Sik;Kang, Kee-Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • BACKGROUND: Mine drainage from metal mining districts is a well-recognized source of environmental contamination. Oxidation of metal sulfides in mines, mine dumps and tailing impoundments produces acidic, metal-rich waters that can contaminate the local surface water and soil. METHODS AND RESULTS: This experiment was carried out to investigate the pollution assessment of heavy metal on the water quality of mine drainage, paddy soils and sediment in lower watershed affected by mine drainage of the Sambo mine. The average concentrations of dissolved Cd (0.018~0.035 mg/L) in mine drainage discharged from the main waste rock dumps(WRD) was higher than the water quality standards (0.01 mg/L) for agricultural water in Korea. Also, the average concentrations of dissolved Zn, Fe and Mn were higher than those of recommended maximum concentrations (Zn 2.0, Fe 5.0, Mn 0.2 mg/L) of trace metal in irrigation water proposed by FAO (1994). The average contents of Pb and Zn in paddy soils was higher than those of standard level for soil contamination(Pb 200, Zn 300 mg/kg) in agricultural soil by Soil Environmental Conservation Act in Korea. Also, the concentrations of Cd, Pb and Zn in sediment were higher than those of standard level for soil contamination (Cd 10, Pb 400, Zn 600 mg/L) in waterway soil by Soil Environmental Conservation Act in Korea. The enrichment factor (EFc) of heavy metals in stream sediments were in the order as Cd>Pb>Zn> As>Cu>Cr>Ni. Also, the geoaccumulation index (Igeo) of heavy metals in stream sediments were in the order as Zn>Cd>Pb>Cu>As>Cr>Ni, specially, the geoaccumulation index (Igeo) of Zn (Igeo 3.1~6.2) were relatively higher than that of other metals in sediment. CONCLUSION(s): The results indicate that stream water and sediment were affected by mine drainage discharged from the Sambo mine at least to a distance of 1 km downstream (SN-1, SN-2) of the mine water discharge point.

Iron Containing Superoxide Dismutase of Streptomyces subrutilus P5 Increases Bacterial Heavy Metal Resistance by Sequestration (Streptomyces subrutilus P5의 철 함유 Superoxide Dismutase의 중금속 격리에 의한 세균의 중금속 저항성 증가)

  • Kim, Jae-Heon;Han, Kwang Yong;Jung, Ho Jin;Lee, Jungnam
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • Mitigation of heavy metal toxicity by iron containing superoxide dismutase (FeSOD) of Streptomyces subrutilus P5 was investigated. For E. coli $DH5{\alpha}$, the survival rate in the presence of 0.1 mM lead ions was only 7% after 120 min; however, with the addition of $0.1{\mu}M$ of purified native FeSOD the survival rate increased to 39%. This detoxification effect was also shown with 0.01 mM copper ions (survival increased from 6% to 50%), and the effect was stronger than with the use of EDTA. E. coli M15[pREP4] producing 6xHis-tagged FeSOD was constructed, and this showed an increase in survival rates throughout the incubation time; in the presence of 0.1 mM lead ions,the final increase at 60 min was from 3% to 19%. The FeSOD absorbed about 123 g-atom lead per subunit; therefore, we suggest that FeSOD could sequestrate toxic heavy metals to enhance bacterial survival against heavy metal contamination.

The controversial points and a remedy on evaluation of heavy metal contamination in standard method for examination of soil in Korea. (국내 토양오염 공정시험방법중 중금속 관련 오염평가의 문제점과 개선책)

  • 오창환;유연희;이평구;박성원;이영엽
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.298-301
    • /
    • 2000
  • Heavy metals are extracted from stream sediments, roadside soils and sediments and soils and tailings from mining area using partial extraction, acid digestion and HF-digestion. Compared to amounts of heavy metals extracted using partial extraction, those extracted using acid digestion are higher by 2.0∼220.9 times in Cu, 2.4∼2806.1 times in Pb, 1.3∼121 times in Cd, 14.1∼1300885 times in Fe, 1.2∼271.5 times in Mn, 1.3∼372.5 times in Zn, 2.2∼1734.5 times in Cr. Although partial extraction, which extracts less amounts of heavy metals from soil compared to acid digestion, is used in domestic standard method for examination of soil, domestic soil standard for heavy metals in non-agricultural and industrial areas is higher than soil standard in foreign countries which use acid digestion, For improvement of the domestic standard method for assessment of soil, it is suggested to lower the domestic soil standard for heavy metals or to change pretreatment method for extracting heavy metals from partial extraction to acid digestion with modifying the soil standard.

  • PDF

Studies on the Water Quality of Ground Water in Seoul Area and Correlation Analysis Among their Contaminants (서울지역 지하수의 오염도와 성분별 相關性 檢討)

  • Ahn, Soo-Mi;Oh, Soo-Kyoung;Park, Sung-Bae
    • Journal of Environmental Health Sciences
    • /
    • v.15 no.1
    • /
    • pp.51-62
    • /
    • 1989
  • This survey was performed to investigate contamination degree and significance in each item of 406 samples of ground water, which was collected in Seoul area from Jan. to Dec. 1988. The results of this study were as follows 1. The unsuitable rate of ground water investigated was 69.7%(32.4% in only bacteria, 23.6% in both bacteria and physico-chemistry and 13.6% in only physico-chemical contamination). 2. The unsuitable rate in each item was the highest(54.2%) in standard plate countland 29.8% in coliform, 12.8% in turbidity, 11.3% in Zn, and 10.8% in Mn. 3. The total mean concentrations in each item were lower than standard except standard plate count, coliform, and Fe. 4. In the analysis of corelation, among items, both total hardness and residual solids were showed very high correlationship (P < 0.01) with other items, and both S.P.C. and coliform showed very highly significant (P < 0.01) with NH$_3$-N.

  • PDF

Evaluation of Organic Matter and Trace Metal Contamination in Surface Sediments around the Geum River Estuary using Sediment Quality Guidelines (퇴적물 오염기준을 이용한 금강 하구역 표층 퇴적물내 유기물 및 미량금속 오염 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Sook-Yang;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.930-940
    • /
    • 2013
  • We evaluated contamination with organic matter and trace metals by analyzing grain size, ignition loss (IL), chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Al, Fe, Cu, Pb, Zn, Cd, Ni, Cr, Mn, Hg, and As) in surface sediments at 28 stations around the Geum River estuary in July 2008. The surface sediments in the estuary were mainly composed of coarse sediment (sand and muddy sand), with mean grain size (Mz) ranging between $2-4{\O}$. The high concentrations of IL, COD, and trace metals were mainly found at stations in front of the Gusan outer port and industrial complex, and near the Seocheon coast with relatively fine sediments. In addition, the concentrations of IL and all trace metals, except Pb and As, showed good positive correlations with Mz, indicating that the concentrations of organic matter and trace metals were mainly dependent on sediment grain size. The concentrations of COD, AVS, and trace metals in most sediments did not exceed the sediment quality guideline (SQGs). Although the sediments in the study region are not polluted with organic matter and trace metals, there are many point sources of pollutants, such as Gusan port and industrial complex, Janghang refinery, and a thermoelectric power plant around the Geum River estuary. Thus, the management of coastal environments through periodic monitoring of organic matter and trace metals is required in the future.