• Title/Summary/Keyword: Fe coating

Search Result 533, Processing Time 0.022 seconds

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC

  • Jun, JaeHo;Jun, JoongHwan;Kim, KyooYoung
    • Corrosion Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.161-165
    • /
    • 2004
  • Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.

Sintering of Nd-Fe-B Magnets from Dy Coated Powder

  • Kim, Jin Woo;Kim, Young Do
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.169-173
    • /
    • 2013
  • High-coercive (Nd,Dy)-Fe-B magnets were fabricated via dysprosium coating on Nd-Fe-B powder. The sputtering coating process of Nd-Fe-B powder yielded samples with densities greater than 98%. $(Nd,Dy)_2Fe_{14}B$ phases may have effectively penetrated into the boundaries between neighboring $Nd_2Fe_{14}B$ grains during the sputtering coating process, thereby forming a $(Nd,Dy)_2Fe_{14}B$ phase at the grain boundary. The maximum thickness of the Dy shell was approximately 70 nm. The maximum coercivity of the Dy sputter coated samples(sintered samples) increased from 1162.42 to 2020.70 kA/m. The microstructures of the $(Nd,Dy)_2Fe_{14}B$ phases were effectively controlled, resulting in improved magnetic properties. The increase in coercivity of the Nd-Fe-B sintered magnet is discussed from a microstructural point of view.

Preparation of Iron-Coated Sand and Arsenic Adsorption (철코팅 모래흡착제 제조 및 비소흡착)

  • Chang, Yoon-Young;Kim, Kwang-Sub;Jung, Jae-Hyun;Lee, Seung-Mok;Yang, Jae-Kyu;Park, Joon-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.697-703
    • /
    • 2005
  • Iron-coated sand(ICS) was prepared with variation of particle size of Joomoonjin sand, primary and secondary coating temperature, coating time, and dosage of initial Fe(III). An optimum condition of the preparation ICS was selected from the coating efficiency, stability of coated Fe(III), and removal efficiency of As(V). Coated amount of Fe(III) increased as primary coating temperature increased with smaller particle size of sand. Coating efficiency was quite similar over the investigated secondary coating temperature and time, while adsorption efficiency of As(V) onto ICS was severely reduced with ICS prepared at higher secondary coating temperature. By considering these results, an optimum secondary coating temperature and time for the preparation of ICS was selected as $150^{\circ}C$ and 1-hr, respectively. Coating efficiency increased us the dosage of initial Fe(III) up to 0.8 Fe(III) mol/kg sand and then no distinct increase was noted. Maximum As(V) adsorption was observed at 0.8 Fe(III) mol/kg sand. Secondary coating temperature and time were important parameters affecting stability of ICS, showing decreased dissolution of Fe(III) from ICS prepared at higher coating temperature and at longer coating time. From anionic type adsorption of As(V) onto ICS, it is possible to suggest the application of ICS for the removal of As(V) contaminated in acidic water system.

A Study on AK Shadow Mask with Fe-Ni Alloy Coating for Flat CPTs

  • Kim, Sang-Mun
    • Journal of Information Display
    • /
    • v.5 no.4
    • /
    • pp.27-30
    • /
    • 2004
  • This paper investigates the effects of coating such as Invar (Fe-36% Ni), Fe-Ni Alloys and $WO_3$ on the doming property of aluminum killed (AK) shadow masks, which may be used for flat CPTs. Invar and Fe-Ni Alloys are deposited on AK shadow mask in plasma atmosphere and annealed. $WO_3$ is screen-printed on the deposited layer. The coating is observed to cause a decrease in the doming property of the shadow masks due to their lower thermal expansion coefficients and anti-doming properties.

A study on the preparation of ${alpha}-Fe_2O_3$films by dip-coating method (Dip-coating법에 의한 ${alpha}-Fe_2O_3$막 제조에 관한 연구)

  • 강경원;정용선;현부성;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.292-298
    • /
    • 1998
  • ${\alpha}-Fe_2O_3$films were prepared by a dip-coating method using the mixed solution of ferric nitrate, ethylene glycol and acethyl acetone. The polymerization effect of the mixed solution was studied by FT-IR spectroscopic analysis, and the decomposition of organic parts and crystallization of the dip-coated film were investigated by FT-IR, XRD and DSC. In addition, AFM and SEM were employed to analyze the surface roughness and the thickness of ${\alpha}-Fe_2O_3$films.

  • PDF

Effective Carbon Coating on $LiFePO_4$ Using Petroleum Pitch (석유 핏치를 이용한 $LiFePO_4$의 효율적인 탄소 코팅방법)

  • Lee, Jae-Won;Oh, Chi-Hoon;Park, Sun-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.303-304
    • /
    • 2007
  • A comparison study of carbon coating on $LiFePO_4$ was done with two different carbon sources-petroleum pitch and Ketjen black. Raman spectroscopy and transmission electron microscopy (TEM) analysis were applied to the carbon-coated $LiFePO_4$. $LiFePO_4$ which was carbon-coated with petroleum pitch showed more uniform carbon layer and ordered carbon structure. Such uniformity and ordered structure of carbon coating layer resulted in higher initial discharge capacity and better rate capability.

  • PDF

Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production (수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석)

  • Lee, Yu-Jin;An, Geon-Hyoung;Park, Man-Ho;Lee, Chang-Woo;Choi, Sang-Hyun;Jung, Ju-Yong;Jo, Sung-Jong;Lee, Kun-Jae;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

Effect of Ni Bond Coat on Adhesive Properties of Fe Coating Thermal Sprayed on Al Substrate (Ni 본드코팅이 Al 기지에 고온 용사 코팅된 Fe 코팅층의 접합특성에 미치는 영향)

  • Kwon, Eui-Pyo;Kim, Dae-Young;Lee, Jong-Kweon
    • Korean Journal of Materials Research
    • /
    • v.26 no.10
    • /
    • pp.542-548
    • /
    • 2016
  • The influence of NiCrAlY bond coating on the adhesion properties of an Fe thermal coating sprayed on an Al substrate was investigated. By applying a bond coat, an adhesion strength of 21MPa was obtained, which was higher than the 15.5MPa strength of the coating without the bond coat. Formation of cracks at the interface of the bond coat and the Al substrate was suppressed by applying the bond coat. Microstructural analysis of the coating interface using EBSD and TEM indicated that the dominant bonding mechanism was mechanical interlocking. Mechanical interlocking without crack defects in the coating interface may improve the adhesion strength of the coating. In conclusion, the use of an NiCrAlY bond coat is an effective method of improving the adhesion properties of thermal sprayed Fe coatings on Al substrates.

Recycling Water Treatment of Aquaculture by Using DynaSand Filter II. Effect of Coating on Removal of Bacteria and Virus in Sand Columns (상향류식 연속 역세 여과를 이용한 양어장 순환수 재리용 II. 여과사의 표면처리에 의한 세균 및 바이러스 처리율 검토)

  • 박종호;조규석;황규덕;김이오
    • Journal of Aquaculture
    • /
    • v.16 no.2
    • /
    • pp.76-83
    • /
    • 2003
  • To improve the efficiency of removal of bacteria and virus with DynaSand Filters used for treatment of recycling wastewater from aquaculture, effect of biofilm formation on bacterial transport through coated sand was estimated. At the neutral pH (pH 7.0), the coated sand was positive of zeta potential (surface charge). Column experiments were also carried out to test the effect of uncoated sand as well as coated sand with Al and Fe. The coated sand influenced more significantly the surface properties, adsorption and transport than the uncoated sand. The leaching batch system investigated for synthetic water showed concentrations of 7.47, 4.80, 20.89 and 7.23 mg/L for the uncoated sand, coated sand with Al, Fe and Al+Fe, respectively. Hence there are significant differences among the tested coatings with reference to bacterial transport and surface properties.