Browse > Article

Lifetime Evaluation of AI-Fe Coating in Wet-seal Environment of MCFC  

Jun, JaeHo (New Materials &Components Research Center, Research Institute of Industrial Science and Technology)
Jun, JoongHwan (New Materials &Components Research Center, Research Institute of Industrial Science and Technology)
Kim, KyooYoung (Department of Materials Science & Engineering, Pohang University of Science and Technology)
Publication Information
Corrosion Science and Technology / v.3, no.4, 2004 , pp. 161-165 More about this Journal
Abstract
Aluminum source in an Al-Fe coating reacts with molten carbonate and develops a protective $LiAlO_2$ layer on the coating surface during operation of molten carbonate fuel cells (MCFC). However, if aluminum content in an Al-Fe coating decreases to a critical level for some reasons during MCFC operation, a stable and continuous $LiAlO_2$ protective layer can no longer be maintained. The aluminum content in an Al-Fe coating can be depleted by two different processes; one is by corrosion reaction at the surface between the aluminum source in the coating and molten carbonate, and the other is inward-diffusion of aluminum atoms within the coating into a substrate. In these two respects, therefore, the decreasing rate of aluminum concentration in an Al-Fe coating was measured, and then the influences of these two aspects on the lifetime of Al-Fe coating were investigated, respectively.
Keywords
molten carbonate fuel cell; AI-Fe coating; lifetime evaluation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Y. Yuh, R. Johnsen, M. Farooque, and H. C. Maru, Proc. Symp. Molten Carbonate Fuel Cell Technology,p. 158, The Electrochemical Society, Pennington, NJ (1993)
2 M. Yamamoto,N. Fujimoto, Y. Uenatsu, and T. Nagoya, Nisshin Steel Technical Report, 73, 18 (1996)
3 M. Sasaki, S. Ohta, M. Asno, and N. Igata, Cor. Eng., 45, 231 (1996)
4 C. L. Zeng, W. Wang, and W. T. Wu, Oxid. Met., 53, 289 (2000)
5 W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion, 45, 232 (1994)
6 M. Eggersmann and H. Mehrer, Met. Phys. Adv. Tech., 19, 113 (2001)
7 S. Schiller, U. Heisig, and S. Panzer, Electron Beam Technology, p. 100,John Wiley& Sons, Inc.,New York, 1982
8 S. Frangini, Oxid. Met., 53, 139 (2000)
9 J. P. T. Huijsmans, G. J. Kraaij, R. C. Makkus, G. Rietveld, E. F. Sitters, and H. Th. J. Reijers, J of Power Sources 86, 117 (2000)
10 J. R. Selman, Fuel Cell Systems, p.345, Plenum Press, New York, 1993
11 D. Gupta and P. S. Ho, Diffusion Phenomena in Thin Films and Microelectronic Materials, Chapter 1, NOYES Publications, NJ, 1988
12 J. E. Indacochea, I. Bloom, M. Krumpelt, and T. G. Benjamin, J Mater. Res., 13, 1834 (1998)
13 P. F. Tortorelli and K. Natesan, Mater. Sci. & Eng.,A258, liS (1998)
14 Mehrer, M. Eggersmann, A. Gude, M. Salamon, and B. Sepiol, Mater., Sci. & Eng., A239-240, 889 (1997).
15 R. A. Donado, L. G. Marianowski, H. C. Maru, and J. R. Selman, J Electrochem. Soc., 131, 2535 (1984)
16 E. Payne and P. D. Desai, Properties of Interrnetallic Alloys, Chapter 2, Metal Information Analysis Center, CINDAS, Indiana, 1994
17 K. Matsumoto, A. Matsuoka, and K. Nakagawa, Denki Kagaku, 66, 537 (1998)