• Title/Summary/Keyword: Fe/Ni layer

Search Result 338, Processing Time 0.022 seconds

Fabrication and Performance of Anode-Supported Flat Tubular Solid Oxide Fuel Cell Unit Bundle (연료극 지지체식 평관형 고체산화물 연료전지 단위 번들의 제조 및 성능)

  • Lim, Tak-Hyoung;Kim, Gwan-Yeong;Park, Jae-Layng;Lee, Seung-Bok;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.283-287
    • /
    • 2007
  • KIER has been developing the anode-supported flat tubular solid oxide fuel cell unit bundle for the intermediate temperature($700{\sim}800^{\circ}C$) operation. Anode-supported flat tubular cells have Ni/YSZ cermet anode support, 8 moi.% $Y_2O_3$ stabilized $ZrO_2(YSZ)$ thin electrolyte, and cathode multi-layer composed of Sr-doped $LaSrMnO_3(LSM)$, LSM-YSZ composite, and $LaSrCoFeO_3(LSCF)$. The prepared anode-supported flat tubular cell was joined with ferritic stainless steel cap by induction brazing process. Current collection for the cathode was achieved by winding Ag wire and $La_{0.6}Sr_{0.4}CoO_3(LSCo)$ paste, while current collection for the anode was achieved by using Ni wire and felt. For making stack, the prepared anode-supported flat tubular cells with effective electrode area of $90\;cm^2$ connected in series with 12 unit bundles, in which unit bundle consists of two cells connected in parallel. The performance of unit bundle in 3% humidified $H_2$ and air at $800^{\circ}C$ shows maximum power density of $0.39\;W/cm^2$ (@ 0.7V). Through these experiments, we obtained basic technology of the anode-supported flat tubular cell and established the proprietary concept of the anode-supported flat tubular cell unit bundle.

Characteristics of UNFS Using Carbide Pellet and Zeolite Pellet to Remove Heavy Metals Contained in Road Runoff (탄화물 및 제올라이트 여재를 사용하는 UNFS(Upflow Non-point source Filtering System) 시설의 노면배수에 함유된 중금속 제거 특성)

  • Kim, Boo-Gil;Park, Han-Ju;Kim, Il-Ryong
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1147-1154
    • /
    • 2008
  • Road runoff, one of non-point source pollutants, contains various heavy metals, most of which flow into discharge waters without being treated. The mechanism of removing the heavy metals in water is similar to that of removing micro-particles. Therefore, it is considered that it is possible to remove a lot of the heavy metals contained in the road runoff by filtering or absorbing them. In this paper, performed has been a basic study on the characteristics of UNFS (Up Flow Non-Point Source Filtering System) using carbide pellet and zeolite pellet as double-layer filtering mediums to treat the road runoff. The removal rate with filtering and absorption time has been shown as follows: 29.0% for Cr; 27.8% for Cd; 25.7% for Fe; 25.4% for Co; 21.2% for Pb; ]9.6% for Zn; 18.2% for Al; 17.0% for Mn; 11.3% for Ni; 7.5% for Cu. The overall removal rate according to influx change has been shown to be approximately 30%, and the load of heavy metals flowing out in initial precipitation could be reduced by using carbide as a recycling filtering medium. When the removal as coarse particles settle is added up, it is expected that UNFS will result in a higher removal rate.

Electrodeposition of Permalloy-Silica Composite Coating (전기도금법을 이용한 퍼멀로이-실리카 복합도금)

  • Jung, Myung-Won;Kim, Jong-Hoon;Lee, Heung-Yeol;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2010
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and sonication time. Longer sonication period guaranteed better silica nanopowder dispersion and sonication period also influenced on composition of deposits. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In alkaline bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.

Low-temperature solution-processed aluminum oxide layers for resistance random access memory on a flexible substrate

  • Sin, Jung-Won;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.257-257
    • /
    • 2016
  • 최근에 메모리의 초고속화, 고집적화 및 초절전화가 요구되면서 resistive random access memory (ReRAM), ferroelectric RAM (FeRAM), phase change RAM (PRAM)등과 같은 차세대 메모리 기술이 활발히 연구되고 있다. 다양한 메모리 중에서 특히 resistive random access memory (ReRAM)는 빠른 동작 속도, 낮은 동작 전압, 대용량화와 비휘발성 등의 장점을 가진다. ReRAM 소자는 절연막의 저항 스위칭(resistance switching) 현상을 이용하여 동작하기 때문에 SiOx, AlOx, TaOx, ZrOx, NiOx, TiOx, 그리고 HfOx 등과 같은 금속 산화물에 대한 연구들이 활발하게 이루어지고 있다. 이와 같이 다양한 산화물 중에서 AlOx는 ReRAM의 절연막으로 적용되었을 때, 우수한 저항변화특성과 안정성을 가진다. 하지만, AlOx 박막을 형성하기 위하여 기존에 많이 사용되어지던 PVD (physical vapour deposition) 또는 CVD (chemical vapour deposition) 방법에서는 두께가 균일하고 막질이 우수한 박막을 얻을 수 있지만 고가의 진공장비 사용 및 대면적 공정이 곤란하다는 문제점이 있다. 한편, 용액 공정 방법은 공정과정이 간단하여 경제적이고 대면적화가 가능하며 저온에서 공정이 이루어지는 장점으로 많은 관심을 받고 있다. 본 연구에서는 sputtering 방법과 용액 공정 방법으로 형성한 AlOx 기반의 ReRAM에서 메모리 특성을 비교 및 평가하였다. 먼저, p-type Si 기판 위에 습식산화를 통하여 SiO2 300 nm를 성장시킨 후, electron beam evaporation으로 하부 전극을 형성하기 위하여 Ti와 Pt를 각각 10 nm와 100 nm의 두께로 증착하였다. 이후, 제작된 AlOx 용액을 spin coating 방법으로 1000 rpm 10 초, 6000 rpm 30 초의 조건으로 증착하였다. Solvent 및 불순물 제거를 위하여 $180^{\circ}C$의 온도에서 10 분 동안 열처리를 진행하였고, 상부 전극을 형성하기 위해 shadow mask를 이용하여 각각 50 nm, 100 nm 두께의 Ti와 Al을 electron beam evaporation 방법으로 증착하였다. 측정 결과, 용액 공정 방법으로 형성한 AlOx 기반의 ReRAM에서는 기존의 sputtering 방법으로 제작된 ReRAM에 비해서 저항 분포가 균일하지는 않았지만, 103 cycle 이상의 우수한 endurance 특성을 나타냈다. 또한, 1 V 내외로 동작 전압이 낮았으며 104 초 동안의 retention 측정에서도 메모리 특성이 일정하게 유지되었다. 결론적으로, 간단한 용액 공정 방법은 ReRAM 소자 제작에 많이 이용될 것으로 기대된다.

  • PDF

Hot Corrosion Behavior of Al-Y Coated Haynes 263 in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 Al-Y 코팅한 Haynes 263의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is very corrosive fir typical structural materials. So, it is essential to choose the optimum material f3r the process equipment handling molten salt. In this study, the corrosion behavior of Al-Y coated Haynes 263 in a molten salt of $LiCl-Li_2O$ under oxidation atmosphere was investigated at $650^{\circ}C$ for $72\~168$ hours. The corrosion rate of Al-Y coated Haynes 263 was low while that of bare Haynes 263 was high in a molten salt of $LiCl-Li_2O$. Al-Y coated Haynes 263 improved the corrosion resistance better than bare Haynes 263 alloy. An Al oxide layer acts as a protective film which Prohibits Penetration of oxygen. Corrosion Products were formed $Li(Ni,Co)O_2$ and $LiTiO_2$ on bare Haynes 263, but $LiAlO_2,\;Li_5Fe_5O_8\;and\;LiTiO_2$ on Al-Y coated Haynes 263.

Development of a duplex stainless steel for dry storage canister with improved chloride-induced stress corrosion cracking resistance

  • Chaewon Jeong;Ji Ho Shin;Byeong Seo Kong;Junjie Chen;Qian Xiao;Changheui Jang;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2131-2140
    • /
    • 2024
  • The chloride-induced stress corrosion cracking (CISCC) is one of the major integrity concerns in dry storage canisters made of austenitic stainless steels (ASSs). In this study, an advanced duplex stainless steel (DSS) with a composition of Fe-19Cr-4Ni-2.5Mo-4.5Mn (ADCS) was developed and its performance was compared with that of commercial ASS and DSS alloys. The chemical composition of ADCS was determined to obtain greater pitting and CISCC resistance as well as a proper combination of strength and ductility. Then, the thermomechanical processing (TMP) condition was applied, which resulted in higher strength than ASSs (304L SS and 316L SS) and better ductility than DSSs (2101 LDSS and 2205 DSS). The potentiodynamic polarization and electrochemical impedance spectra (EIS) results represented the better pitting corrosion resistance of ADCS compared to 304L SS and 316L SS by forming a better passive layer. The CISCC tests using four-point loaded specimens showed that cracks were initiated at 24 h for 304L SS and 144 h for 316L SS, while crack was not found until 1008 h for ADCS. Overall, the developed alloy, ADCS, showed better combination of CISCC resistance and mechanical properties as dry storage canister materials than commercial alloys.

Silicidation Reaction Stability with Natural Oxides in Cobalt Nickel Composite Silicide Process (자연산화막 존재에 따른 코발트 니켈 복합실리사이드 공정의 안정성)

  • Song, Oh-Sung;Kim, Sang-Yeob;Kim, Jong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2007
  • We investigated the silicide reaction stability between 10 nm-Col-xNix alloy films and silicon substrates with the existence of 4 nm-thick natural oxide layers. We thermally evaporated 10 nm-Col-xNix alloy films by varying $x=0.1{\sim}0.9$ on naturally oxidized single crystal and 70 nm-thick polycrystalline silicon substrates. The films structures were annealed by rapid thermal annealing (RTA) from $600^{\circ}C$ to $1100^{\circ}C$ for 40 seconds with the purpose of silicidation. After the removal of residual metallic residue with sulfuric acid, the sheet resistance, microstructure, composition, and surface roughness were investigated using a four-point probe, a field emission scanning electron microscope, a field ion bean4 an X-ray diffractometer, and an Auger electron depth profiling spectroscope, respectively, to confirm the silicide reaction. The residual stress of silicon substrate was also analyzed using a micro-Raman spectrometer We report that the silicide reaction does not occur if natural oxides are present. Metallic oxide residues may be present on a polysilicon substrate at high silicidation temperatures. Huge residual stress is possible on a single crystal silicon substrate at high temperature, and these may result in micro-pinholes. Our results imply that the natural oxide layer removal process is of importance to ensure the successful completion of the silicide process with CoNi alloy films.

  • PDF

Dispersion Method of Silica Nanopowders for Permalloy Composite Coating (퍼멀로이 합금도금을 위한 나노실리카 분산방법에 관한 연구)

  • Park, So-Yeon;Jung, Myung-Won;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.39-42
    • /
    • 2011
  • The composite electroplating is accomplished by adding inert materials during the electroplating. Permalloy is the term for Ni-Fe alloy and it is used for industrial applications due to its high magnetic permeability, surface wear resistance, corrosion protection. Microhardness for microdevices is enhanced after composite coating and it increases the life cycle. However, the hydroxyl group on the silica makes their surface susceptible to moisture and it causes the silica nanoparticles to be agglomerated in the aqueous solution. The agglomeration problem causes poor dispersion which eventually interrupts uniform deposition of silica nanoparticles. In this study, the dispersion of silica nanoparticles in the permalloy electroplated layer is reported with variation of additives and current densities. The optimum current density was 20 $mA/cm^2$ and the silica content was 9 at% at $50^{\circ}C$. The amount of silica nanopowder codeposition and surface morphologies were influenced with variation of additives. In the bath, smooth surface morphology and relatively high contents of silica nanopowder codeposition were obtained with addition of sodium lauryl sulfate.