• Title/Summary/Keyword: Fe(III)/Fe(II)

Search Result 297, Processing Time 0.027 seconds

The Black Hole Mass - Stellar Velocity Dispersion Relation of Narrow-Line Seyfert 1 Galaxies

  • Yoon, Yosep;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.75.1-75.1
    • /
    • 2012
  • Narrow-Line Seyfert 1 galaxies are arguably the most important AGN subclass in investigating the origin of the black hole mass-galaxy stellar velocity dispersion (MBH-${\sigma}$) relation because of their high accretion rates close to the Eddington limit. Currently, it is still under discussion whether NLS1s are off from the local MBH-${\sigma}$ relation. We select a sample of 325 NLS1 at relatively low redshift (z<0.1) from the SDSS DR7 by constraining FWHM of $H{\beta}$ in the range of 800-2,200 km/s. Among them, we measured stellar velocity dispersion of 40 objects which show strong stellar absorption lines, e.g. Mg b triplet(${\sim}5175{\AA}$), Fe($5270{\AA}$). In contrast, the other 285 objects show too weak stellar absorption lines to measure velocity dispersion. Using the sample of 40 objects with stellar velocity dispersion measurements, we investigate whether NLS1s follow the same MBH-${\sigma}$ relation as normal galaxies and broad line AGNs. We also test the reliability of the width of narrow lines as a surrogate of stellar velocity dispersion by comparing directly measured stellar velocity dispersion with ${\sigma}$ inferred from [O III], [N II], [S II] line widths, respectively. We will discuss the connection between AGN activity in NLS1s and galaxy evolution based on these results.

  • PDF

Studies on Preparation of Resion-Metal Chelates and Its Catalytic Activity for the Oxidation of Hydroxy Compounds and l-Ascorbic Acid (Resin-Metal Chelate의 제조와 Hydroxy화합물 및 l-Ascorbic Acid의 산화 촉매효과에 관한 연구)

  • Whang Kyu-Ja;Lee Young Sun;Kim Young Mi;Lee Yong-Keun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.113-119
    • /
    • 1989
  • Chelating resins containing hydrazide or triethylenetetramine side chain were prepared using a commercial cation exchage resin, Diaion WK 11, and their nitrogen contents were determined by elemental analysis. The synthesized resin, and commercial chelating resins, (Diaion-CR 10 and-CR 20) were treated with various metal chelates of which metal contents were subsequently determined by chelatometry. Sectioned beads of the resin-metal chelates were also observed using electron microprobs X-ray analyzer. To examine the catalytic activity of the resin-metal chelates, they were applied to the oxidation of various hydroxy compounds and l-ascorbic acid, and found to be effective catalysts.

  • PDF

Copper Mineralization Around the Ohto Mountain in the Southeastern Part of Euiseong, Gyeongsangbug-Do, Republic of Korea (경북·의성 동남부 오토산 주변의 동광화작용)

  • Lee, Hyon Koo;Kim, Sang Jung;Yun, Hyesu;Song, Young Su;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.26 no.3
    • /
    • pp.311-325
    • /
    • 1993
  • The Ohto and Tohyun copper mine which are located 4 km southeast of Euiseong, Gyeongsangbukdo, Republic of Korea show various common geologic and mineralogic features. Both copper deposits are of hydrothermal-vein types, and associated with fracture system developed during formation of the Geumseong-san caldera in late Cretaceous age. According to structures and mineral assemblages, the mineralization processes have progressed in four stages: three hypogene mineralization stages and one supergene stage. Three hypogene stages are 1) stage I forming $N5{\sim}20^{\circ}E$ veins in the Ohto mine, 2) stage II building $N5^{\circ}W{\sim}N5^{\circ}E$ veins in the Tohyun mine, and 3) stage ill bringing $N80^{\circ}E$ veins which crosscut veins of the stage II. The vein ores consist mainly of pyrite, arsenopyrite, galena and chalcopyrite, minor or trace amounts of magnetite, hematite, pyrrhotite, stannite, bournonite, boulangerite, stibnite, galenobismutite, native bismuth, marcasite, geothite and malachite. The main gangue minerals are quartz and calcite. Wallrock is altered by sericitization, chloritization, pyritization, carbonitization and argillization. Arsenic and copper contents in arsenopyrite increase from stage I to stage III (from 31.28 to 33043 atom.% As) and (from 0.04 to 0040 atom.% Co). Going from stage I to stage III Fe and Mn contents in sphalerite decreases from 12.56 to 0.44 wt.% and from 0.24 to 0.01 wt.%, respectively. The compositional data of arsenopyrite in the early stage I indicate a temperature of $420{\sim}365^{\circ}C$ and sulfur fugacity of $10^{-6.5}{\sim}10^{-8.3}$ atm. Chalcopyrite and pyrrhotite assemblage suggest that Middle stage I was deposited at below $334^{\circ}C$. The compositional data of arsenopyrite in early stage II suggest a temperature range of $425{\sim}390^{\circ}C$ and sulfur fugacity codition of $10^{-6.4}{\sim}10^{-7.3}$ atm. Based on fluid inclusion the Middle stage II was regarded as to be deposited at $420{\sim}337^{\circ}C$ (Chi et al., 1989). Referring composition of sphalerite and stannite middle-late stage II seem to be deposited around $246^{\circ}C$ and $10^{-16.5}$ atm. sulfur fugacity. The ${\delta}^{34}S$ values of sulfide minerals in the Stage I, II, III range from 4.9 to 7.6%0 and indicate igneous ore fluid origin. Based on differences in mineral assemblages, chemical composition and chemical environments of Ohto and Tohyun mine its mineralization are considered to be formed at diffent mineralization ages and by different ore fluids.

  • PDF

Characterization and Production of Thermostable and Acid-stable Extracellular Fibrinolytic Enzymes from Cordyceps militaris

  • Kim, Seon-Ah;Son, Hong-Joo;Kim, Keun-Ki;Park, Hyun-Chul;Lee, Sang-Mong;Cho, Byung-Wook;Kim, Yong-Gyun
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.83-93
    • /
    • 2011
  • Biochemical and enzymatic characterization for extracellular protease isolated from Cordyceps militaris cultivated on rice bran medium was investigated. C militaris produced proteolytic enzymes from 10 days after inoculation, maximum enzyme production was found at 25 days. The optimum temperature and pH of proteases production was at $25^{\circ}C$ and pH 7.0, respectively. The protease activity was observed in the four peaks (Pro-I, Pro-II, Pro-III, and Pro-IV) separated through Sephadex G-100 column chromatography. The separated protease was optimally active at $25^{\circ}C$. Optimum pH of the protease was between 7 and 8. Enzyme was also stable over at $30-80^{\circ}C$. The enzyme was highly stable in a pH range of 4-9. Protease activity was found to be slightly decreased by the addition of $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Fe^{2+}$ and $Cu^{2+}$, whereas inhibited by the addition of $Ca^{2+}$ and $Co^{2+}$ Protease activity was inhibited by protease inhibitor PMSF. On the other hand, the partially purified protease was investigated on proteolytic protease activity by zymogram gel electrophoresis using three substances (casein, gelatin and fibrin). Four active bands (F-I, FII, F-III, and F-IV) of fibrin degradation were revealed on fibrin zymogram gels. Both of F-II and FIII showed caseinolytic, fibrinolytic and gelatinolytic activities in three gels. Thermostability, pH stability, and pH-thermostability of the enzyme determined the residual fibrinolytic activity also displayed on fibrin zymogram gel. The only one enzyme (F-II) displayed over a broad range of temperature at $30-90^{\circ}C$. The FII displayed fibrinolytic activity in the pH range 3-5, but was inactivated in the range of pH 6-11. The F-I and F-III showed enzyme activity in the pH range of 6-11. In the pH-thermostability, the F-II only kept fibrinolytic activity after heating at $100^{\circ}C$ for 10, 20 and 30 min at pH 3 and pH 7, respectively. On the other hand, the F-II was retained activity until heating for 10 min under pH 11 condition. By using fibrin zymogram gel electrophoresis, extracellular fibrinolytic enzyme F-II from C. militaris showed unusual thermostable under acid and neutral conditions.

Antioxidantive, Phospholipase $A_2$ Inhibiting, and Anticancer Effect of Polyphenol Rich Fractions from Panax ginseng C. A. Meyer (한국산 인삼의 Polyphenol 분획물의 항산화, Phospholipase $A_2$ 및 암세포증식 억제효과)

  • Choi, Hee-Jin;Han, Ho-Suk;Park, Jung-Hye;Son, Jun-Ho;Bae, Jong-Ho;Seung, Tae-Su;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.251-256
    • /
    • 2003
  • The polyphenol fractions of Korean ginseng were purified using Sephadex LH-20, MCI gel, Bondapak $C_{18}$ TLC, and HPLC from the 60% acetone soluble fraction. Fraction I showed 48.16%, 79.71% and 43.55% inhibition at 150 ppm against lipid oxidation in the presence of copper ion, superoxide and hydrogen peroxidation. Electron donating abilities of fraction II showed 35.17% inhibition at 200 ppm. Fraction III showed 48.49% and 25% inhibition at 150 ppm against lipid oxidation in the presence of ferrous ion and hydroxy radical ion. The phospholipase $A_2$ inhibitory effect of fraction III was 48.9% at the concentration of $60\;{\mu}g/ml$. The cytotoxic effects of fraction II was the highest (73.29% at 0.25 mg/ml) among the tested polyphenol fractions.

Formation of Superoxide Anion in the Autoxidation of L-Ascorbic Acid in the Presence of Heavy Metal Ions (중금속 이온 존재하에서의 아스코르빈산 자동산화 과정에서 $O_2\bar{{\bullet}}$ 생성)

  • Kim, Mi-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.378-383
    • /
    • 2001
  • Formation of superoxide anion $O_2\bar{{\bullet}}$ in the autoxidation of L-ascorbic acid (AsA) in the presence of heavy metal ions were determined. The generation of $O_2\bar{{\bullet}}$ was studied by using superoxide dismutase (SOD) in aqueous and buffer solution, and using nitro bule tetrazolium (NBT) in methanol solution. The remaining amount of AsA was significantly higher in the presence of SOD than in its absence. It suggested that SOD stabilizes AsA in aqueous and buffer solution because of scavenging $O_2\bar{{\bullet}}$ formed during the autoxidation reaction of AsA in the presence of heavy metal ions. NBT has an absorption maximum at about 560 nm in methanol solution. The absorbance at 560 nm increased during the oxidation of AsA, suggested the formation of $O_2\bar{{\bullet}}$in methanol solution. Thus, the formation of $O_2\bar{{\bullet}}$ was confirmed during the autoxidation of AsA not only in aqueous solution but also in methanol solution in the presence heavy metal ions.

  • PDF

Geochemical Environments of Copper-bearing Ore Mineralization in the Haman Mineralized Area (함안지역 함 동 광화작용의 지화학적 환경)

  • Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • The Haman mineralized area is located within the Cretaceous Gyeongsang Basin along the southeastern part of the Korean peninsula. Almost all occurrences in the Haman area are representative of copper-bearing polymetallic hydrothermal vein-type mineralization. Within the area are a number of fissure-filling hydrothermal veins which contain tourmaline, quartz and carbonates with Fe-oxide, base-metal sulfide and sulfosalt minerals. The Gunbuk, Jeilgunbuk and Haman mines are each located on such veins. The ore and gangue mineral paragenesis can be divided into three distinct stages: Stage I, tourmaline + quartz + Fe-Cu ore mineralization; Stage II, quartz + sulfides + sulfosalts + carbonates; Stage III, barren calcite. Equilibrium thermodynamic data combined with mineral paragenesis indicate that copper minerals precipitated mainly within a temperature range of $350^{\circ}C$ to $250^{\circ}C$. During early mineralization at $350^{\circ}C$, significant amounts of copper ($10^3$ to $10^2\;ppm$) could be dissolved in weakly acid NaCl solutions. For late mineralization at $250^{\circ}C$, about $10^0$ to $10^{-1}\;ppm$ copper could be dissolved. Equilibrium thermodynamic interpretation indicates that the copper in the Haman-Gunbuk systems could have been transported as a chloride complex and the copper precipitation occurred as a result of cooling accompanied by changes in the geochemical environments ($fs_2$, $fo_2$, pH, etc.) resulting in decrease of solubility of copper chloride complexes.

Studies on the Effects of Rice Plant on the Changes of Materials in Submerged Paddy Soils (수도재배(水稻栽培)가 답상태토양(畓狀態土壤)의 물질변화(物質變化)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.2
    • /
    • pp.71-97
    • /
    • 1974
  • Many studies on the changes of the materials in the water-logged paddy soil have been reported, but there will be several problems to apply them on the field soil. The main differences between the method of soil packed in beaker or column tube to that of natural field furrow slice are with or without of the rice root and the effect of water percolation. On the other hand, the mechanism of the water percolation on the changes of material in the natural field furrow slice are gradually understood. The purpose of this experiment is to know the effect of the rice cultivation on the chemical and physical changes of material in the water-logged paddy soil. Obtained results are as follows. 1. The physical and chemical changes on the water-logged paddy soil in the non-planted control-plot were nearly the same as the beaker or column tube experiment, while in the planted plot, slightly altered patterns were observed. 2. The relation between the number of tillers and total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, Fe and Mn in the leachate showed very high significance. T hisresult showed that the leaching of those cation was promoted by growing of the rice r- of the rice root. 3. On the other hand, the concentration of the potassium, silica and phosphorus in leachates was gradually decreased and that of $NH_4$-N could not detect after the stage of active tillering. These facts revealed that such components were absorbed by rice plant. 4. The highly significant correlation between the number of tillers and the concentration of the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn in the percolated water was observed except that of $Mg^{{+}{+}}$. It was also showed that the rice root promoted the leaching of those cation. 5. The very high significance in the correlation between $HCO_3{^-}$ and the number of tillers indicated that the higher activity of the rice root was, the more $HCO_3{^-}$ concentration in the leachate was increased. 6. The relationship between the $HCO_3{^-}$ and the total cation, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$, Fe and Mn was appeared very highly significant. $HCO_3{^-}$, the metabolite of the rice root, promoted the leaching of $Ca^{{+}{+}}$, $Mg^{{+}{+}}$, $Fe^{{+}{+}}$ and Mn. This fact might be a result that these cations were leached as the form of bicarbonate. 7. The iron in the leachate was the form of $Fe^{{+}{+}}$ and the correlation between $Fe^{{+}{+}}$ and $HCO_3{^-}$ was very highly significant. This result indicated that it seemed to be ferrous bicarbonate when it is leached out. 8. In the rhizosphere, ferrous iron was decreased gradually and the concentration of glucose was as high as 2 to 3 times in comparison with the other parts of the soil. These facts were the same as the previous reports in which rhizosphere was oxidized by the oxigen excreted from the root, and was enriched by the organic matter which was also excreted from the root and accumulated residues of the root. 9. ${\beta}$-Glucosidase and phosphatase activity in the rhizosphere was higher than that of the other parts of the soil. This facts might be attributed to the vigorous activity of microorganism in the rhizosphere where glucose concentration was high. 10. The pH in the leachate of the planted plot was lower than that of control, and the Eh on the planted soil was elevated in the last stage.

  • PDF

Feasibility Study on Stabilization Technique of Cr(VI)-contaminated Site (Cr(VI)으로 오염된 부지의 안정화 기술에 의한 정화 타당성 연구)

  • Yoon, Geun Seok;Yoo, Jong Chan;Ko, Sung-Hwan;Shim, Myung-Ho;Cho, Myung-Hyun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2017
  • In this study, a remedial investigation using reductive stabilization was conducted to treat Cr(VI)-contaminated soil. The influences of various operational parameters, including reaction time and the mass of ferrous iron, were also evaluated. The study site was contaminated with a large amount of Cr(III) and Cr(VI), and the selected treatment method was to stabilize Cr(VI) with ferrous iron, which reduced Cr(VI) to Cr(III) and stabilized the chromium, although a greater mass of ferrous iron than the stoichiometric amount was required to stabilize the Cr(VI). However, some Cr(III) re-oxidized to Cr(VI) during the drying process, and addition of a strong reducing agent was required to maintain reducing conditions. With this reducing agent, the treated soil met the required regulatory standard, and the mass of Cr(III) re-oxidized to Cr(VI) was significantly reduced, compared to the use of only Fe(II) as a reducing agent.

Electrochemistry of Hemoglobin in the Chitosan and TiO2 Nanoparticles Composite Film Modified Carbon Ionic Liquid Electrode and Its Electrocatalysis

  • Sun, Wei;Li, Xiaoqing;Liu, Shufeng;Jiao, Kui
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.582-588
    • /
    • 2009
  • Direct electron transfer of hemoglobin (Hb) in the chitosan (CTS) and $TiO_2$ nanoparticles (nano-$TiO_2$) composite films was achieved by using a room temperature ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate ($BMIMPF_6$) modified carbon paste electrode (CILE) as the basal electrode. UV-Vis and FT-IR spectroscopy indicated that Hb in the film retained the native structure. Electrochemical investigation indicated that a pair of well-defined quasi-reversible redox peaks of Hb heme Fe(III)/Fe(II) was obtained with the formal potential located at -0.340 V (νs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer coefficient (α), the electron transfer number (n) and the standard electron transfer rate constant ($k_s$) were got as 0.422, 0.93 and 0.117 $s^{-1}$, respectively. The fabricated CTS/nano-$TiO_2$/Hb/CILE showed good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) and hydrogen peroxide ($H_2O_2$), which exhibited a potential application in fabricating a new kind of third generation biosensor.