International Journal of Computer Science & Network Security
/
제22권2호
/
pp.123-130
/
2022
During the past decades, detection of gear defects remains as a major problem, especially when the gears are subject to non-stationary phenomena. The idea of this paper is to mixture a multilevel wavelet transform with a fast EMD decomposition in order to early detect gear defects. The sensitivity of a kurtosis is used as an indicator of gears defect burn. When the gear is damaged, the appearance of a crack on the gear tooth disrupts the signal. This is due to the presence of periodic pulses. Nevertheless, the existence of background noise induced by the random excitation can have an impact on the values of these temporal indicators. The denoising of these signals by multilevel wavelet transform improves the sensitivity of these indicators and increases the reliability of the investigation. Finally, a defect diagnosis result can be obtained after the fast transformation of the EMD. The proposed approach consists in applying a multi-resolution wavelet analysis with variable decomposition levels related to the severity of gear faults, then a fast EMD is used to early detect faults. The proposed mixed methods are evaluated on vibratory signals from the test bench, CETIM. The obtained results have shown the occurrence of a teeth defect on gear on the 5th and 8th day. This result agrees with the report of the appraisal made on this gear system.
냉동 컨테이너의 고장은 큰 비용의 손실을 야기하지만, 현재 냉동 컨테이너의 알람 체계는 효율성이 떨어진다. 기존에 냉동 시스템의 시뮬레이션 데이터를 활용한 연구는 존재하지만, 냉동 컨테이너의 실제 운영 데이터를 활용한 연구는 부족하다. 이에 본 연구는 실제 냉동 컨테이너 운영 데이터를 활용하여 고장 원인을 분류하였다. 실제 데이터에서는 데이터 불균형이 발생하였으며 ENN-SMOTE, 클래스 가중치를 둔 Logistic 회귀분석과 본 연구에서 개발한 2-stage 알고리즘을 비교하여 데이터 불균형문제를 해결하였다. 2-stage 알고리즘은 XGboost, LGBoost, DNN을 사용하여 첫 번째 단계에서는 고장 및 정상을 분류하고, 두 번째 단계에서는 고장의 원인을 분류하는 알고리즘이다. 2-stage 알고리즘에서 LGBoost를 사용한 모델이 99.16%의 정확도로 가장 우수하였다. 본 연구는 데이터 불균형을 해결하기 위해 2-stage 알고리즘을 활용한 최종모델을 제안하며 이는 다른 산업에도 활용할 수 있을 것으로 사료된다.
공정 모니터링 기술은 공정 내에서 일어나는 예상치 못한 조업변화 및 이상을 조기에 감지하고 조업 이상에 영향을 끼친 근본 원인을 밝혀내어 제거해 줌으로써 공정의 안정적인 조업과 양질의 제품생산의 기반을 제공하여 준다. 데이터에 기반한 통계적 공정 모니터링 방법은 양질의 공정 데이터만 주어진다면 통계적 처리를 접목하여 비교적 쉽게 모니터링을 할 수 있고 공정의 데이터 분석에 이용할 수 있는 도구를 얻을 수 있다는 장점이 있다. 그러나 실제 공정에서는 비선형성, non-Gaussianity, 다중 운전모드, 공정상태변화로 인해 기존의 다변량 통계적 방법을 이용한 공정 모니터링 기법은 비효율적이거나, 공정 감시 성능의 저하, 종종 신뢰할 수 없는 결과를 야기한다. 이러한 경우 기존의 방법으로는 더이상 공정을 정확히 감시할 수 없기 때문에 최근에 많은 새로운 방법들이 개발 되었다. 본 총설에서는 이러한 단점을 보안하기 위해 최근 주목할 만한 연구결과인 공정 비선형성을 고려한 커널주성분분석(kernel principle component analysis) 모니터링 기법, 주성분분석 모델 조합을 이용한 다중모델(mixture model) 모니터링 기법, 공정 변화를 고려한 적응모델(adaptive model) 모니터링 기법, 그리고 센서 이상진단과 보정의 이론과 응용결과에 대하여 소개한다.
회전하는 기계시스템에서는 일반적으로 시변 진동신호가 발생되며, 회전기에 고장이 있는 경우 이 신호에 잡음이 포함된다. 본 논문에서는 잡음이 포함된 시변 진동신호를 분해하기 위한 적응예측기와 이진트리구조 필터뱅크로 구성되는 시스템을 제안한다. 그리고 이 시스템에서 분석된 진동신호 결과를 회전기 고장진단에 활용할 수 있음을 보인다. 제안 시스템 적응 예측기는 주기신호성분을 예측하며, 필터뱅크 시스템에서는 입력신호와 예측된 주기신호와의 차 신호를 부밴드 대역으로 분해한다. 각 부밴드 신호에는 고장에 따른 잡음 신호성분이 포함되므로, 이를 이용 회전기의 고장진단이 가능하다. 제안한 신동신호분석 방법의 타당성을 시뮬레이션에서 보이며, 시뮬레이션에서는 주기신호 성분이 제거된 진동신호를 32 부밴드로 분해하여 고장관련 신호 특성을 분석한다.
고정자 권선의 단락으로 인한 고장을 해석하고 진단 알고리즘의 효과적인 시험 평가를 위해 사용될 수 있는 인버터 구동 영구자석 동기전동기의 고장모델이 제시된다. 기존에 전동기의 해석과 제어에 많이 사용되는 dq 모델은 상전압 모델을 변환한 것으로 전동기 고정자의 권선 단락 시에는 더 이상 3상평형 조건이 성립하지 않기 때문에 인버터 극전압으로부터 전동기 입력 전압을 구하기가 쉽지 않아 고장모델의 해석을 위해서 사용하기 어렵다. 이를 해결하기 위해 전동기 3상 변수와 선전압 관계식을 이용한 전동기의 고장모델이 제안된다. 제안된 고장모델의 타당성을 입증하기 위해 시뮬레이션이 수행되며 내부 고정자의 권선 단락이 가능하도록 제작된 전동기와 DSP TMS320F28335를 이용한 제어 시스템에 의해 동일 고장 조건에서 비교 실험이 수행된다.
Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet for the rotating machinery diagnosis. Therefore, in this paper two methods which are processed by Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94 % classification of averaged accuracy with the parameter of the RBF 0.08, 12 feature selection.
유도전동기는 프로세스산업과 다른 산업분야에 광범위하게 적용되는 매우 중요한 기기이다. 프랜트를 운전함에 있어서 이의 신뢰성, 효율 및 성능은 매우 중요한 관심사항이다. 특히 유도전동기의 고장을 미리 검출하여 진단하고 고장 아래에서도 시스템이 안전하고 신뢰성 있는 성능을 가질 수 있는 고장허용제어의 실현이 매우 중요하다. 따라서 본 논문에서는 고정자전류신호 검출과 디지털 신호 프로세싱에 의한 효과적인 유도전동기의 베어링 고장검출 및 진단 기반을 가진 고장허용제어 시스템을 구축하였다. 또한 모타 고장허용제어에 기본이 되는 제어 하드웨어 구조를 제시하였으며 실험을 통하여 이 시스템의 실시간 데이터 취득 성능을 확인하였다.
최근에 신뢰성 있는 전력공급의 중요성이 증가하고 있다. 이에 따라 전력기기 진단의 중요성 역시 증가하고 있다. 산업설비로 많이 사용되는 고압 회전기는 장기간 사용함에 따라 고정자 권선 절연부분이 열화되어 예상치 못한 절연파괴 사고로 많은 손실을 일으킨다. 이를 진단하기 위하여 고압 회전기 고정자 권선에 접촉식 Capacitive Coupler를 설치하고 부분방전 신호를 계측하여 유지 보수하는 것이 가장 넓게 사용되고 있다. 하지만 현장에서 부분방전 계측 시 노이즈가 혼재된다면 정밀한 부분방전 신호를 계측하는 것이 불가능해진다. 본 논문에서는 국내 수력발전소 중 25년 이상 가동 중인 13[kV]급 수력발전기 고정자 권선에서 160[pF] 용량의 접촉식 Capacitive Coupler를 이용하여 취득한 계측신호를 분석하여 기존 하드웨어적으로만 노이즈를 제거하여도 잔존하는 노이즈를 제거하기 위해 소프트웨어적인 주변신호원과의 관계를 고려한 노이즈제거 기법을 제안하였다.
본 논문은 화력 발전소 및 시멘트 산업에서 필요한 원자재의 운송 수단에 사용되는 컨베이어 시스템에서의 고장을 검출하는 방법을 제안하였다. 산업현장에서 사람이 접근하기가 힘들고 넓은 공간에 시스템이 동작 하는 점을 고려하여 소형 드론을 설계하였고 컨베이어의 이상을 감지하기 위하여 컨베이어에 내장된 모터의 이상 소음을 감지하는 방법을 임베디드 환경으로 설계하여 드론에 장착하는 구조로 제안하였다. 시스템을 임베디드 마이크로프로세서에 적용하기 위하여 제한된 메모리와 수행 시간을 고려한 하드웨어 및 알고리즘을 제안하였으며 주파수 분석을 통해 고장의 경향을 파악하여 알고리즘 화 하였다. 이때 고장 판별 방식은 측정을 통하여 피크주파수를 측정하고 고주파수의 연속성을 감지하는 방식으로 고장에 의한 소음의 높은 주파수를 분석하여 고장진단을 시행할 수 있었다. 제안된 시스템은 실제 화력 발전소에서 취득한 데이터를 바탕으로 실험 환경을 구성하였으며 드론에 설계된 시스템을 탑재하여 가상 환경 실험을 하여 제안된 시스템의 유용성을 확인하였다. 향후에는 드론의 비행 안정성 향상과 고장 주파수에 대한 좀 더 정밀한 방법을 사용하여 판별성능을 향상 시키는 연구가 요구된다.
Liu, Yong-kuo;Zhou, Wen;Ayodeji, Abiodun;Zhou, Xin-qiu;Peng, Min-jun;Chao, Nan
Nuclear Engineering and Technology
/
제53권1호
/
pp.148-163
/
2021
Timely fault identification is important for safe and reliable operation of the electric valve system. Many research works have utilized different data-driven approach for fault diagnosis in complex systems. However, they do not consider specific characteristics of critical control components such as electric valves. This work presents an integrated shallow-deep fault diagnostic model, developed based on signals extracted from DN50 electric valve. First, the local optimal issue of particle swarm optimization algorithm is solved by optimizing the weight search capability, the particle speed, and position update strategy. Then, to develop a shallow diagnostic model, the modified particle swarm algorithm is combined with support vector machine to form a hybrid improved particle swarm-support vector machine (IPs-SVM). To decouple the influence of the background noise, the wavelet packet transform method is used to reconstruct the vibration signal. Thereafter, the IPs-SVM is used to classify phase imbalance and damaged valve faults, and the performance was evaluated against other models developed using the conventional SVM and particle swarm optimized SVM. Secondly, three different deep belief network (DBN) models are developed, using different acoustic signal structures: raw signal, wavelet transformed signal and time-series (sequential) signal. The models are developed to estimate internal leakage sizes in the electric valve. The predictive performance of the DBN and the evaluation results of the proposed IPs-SVM are also presented in this paper.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.